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We present a theoretical study of a periodic vibrating string composed of a finite sequence of string

segments connected periodically, with each segment characterized by a constant linear mass

density. The main purpose is to provide a model that can mimic the properties of photonic or

phononic crystals. This system displays frequency intervals for which wave propagation is not

allowed (frequency bandgaps), in close analogy to photonic and phononic crystals. We discuss the

behavior of these bandgaps when varying physical parameters, such as the values of the linear

mass densities, the oscillation frequency, and the number of string segments constituting the entire

system. # 2024 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0094212

I. INTRODUCTION

First proposed in 1987 by Yablonovitch1 and John,2 a pho-
tonic crystal is an arrangement of different material media in
such a way that the crystal’s optical parameters, and hence
dielectric constants, are periodic. Historically, however, the
study of one-dimensional (1D) periodic structures dates back
to 1887 with Lord Rayleigh,3 who analyzed an experiment
performed by Stokes and showed that light shone on this 1D
crystal has a large reflectivity over a well-defined narrow fre-
quency range.

When the period of the optical parameters’ spatial modu-
lation is comparable to the wavelength of the light propagat-
ing through the material, photonic bandgaps appear, which
correspond to frequency ranges in which light propagation is
forbidden in certain directions.4–9 Photonic crystals are the
electromagnetic analog of crystalline solids in which forbid-
den energy bandgaps appear.10 These bandgaps heavily
depend on the spatial modulation pattern, leading to several
strategies for manufacturing photonic crystals.11,12 For fur-
ther study concerning other properties and numerical model-
ing of these materials as well as experimental details on their
fabrication and characterization, see Refs. 4 and 8, and refer-
ences therein.

Since they enable light manipulation, photonic crystals
have attracted much research interest since their discovery.
Because of their capacity to confine and control light at a
given wavelength, such materials have allowed for a variety
of technological applications beyond the field of optical
physics, such as in optoelectronics,13 displays,14 sensors,15

solar cells,16 light-emitting diodes,17 optical fibers,18 and in
the construction of high-efficiency reflectors.19 In nature,
photonic crystals are also present from inorganic opals20 to
different organic structures in butterfly wing scales, beetle
scales, and bird feathers.21

Similarly, the propagation of elastic or acoustic waves in
periodic composite media also produces bandgaps, which
gave rise to the concept of phononic crystals, initially pro-
posed in 1992 by Sigalas and Economou22 and later in 1993

by Kushwaha et al.23 Since then, such systems have been
extensively studied, presenting different applications in engi-
neering and applied physics, such as in vibration reduction24

and noise control.25 Recent reviews covering these periodic
structures can be found in Refs. 26–28. Similar phenomenol-
ogy can be found in semiconductor heterostructures, where
each semiconductor layer can be thought of as a different
propagation medium for the electronic wavefunction (see
Ref. 29 and references therein). Throughout this paper, we
will refer more to photonic crystals, but the analogies can
also be applied to phononic crystals.

The investigation of optical and acoustic responses of
periodic structures is an active area of research and involves
techniques and concepts rarely discussed in standard under-
graduate textbooks. Coaxial cables have widely been used to
emulate 1D photonic crystals, both theoretically and experi-
mentally.30–35 However, since bandgaps appear as a conse-
quence of wave interference, they can be engineered in any
media in which waves propagate. In this regard, we propose
the study of a conceptually simpler 1D photonic (phononic)
crystal analog: the periodic string, which requires only an
introductory classical mechanics background. Such a config-
uration consists of a finite sequence of interconnected string
segments, presenting periodically alternating linear mass
densities, which play the role of dielectric permittivities
(densities) in photonic (phononic) crystals. The analogy is
made possible because the light (sound) velocity in a given
material is a function of its permittivity (density), while the
wave velocity in a string depends on its linear mass density.
As in the context of photonic crystals, bandgaps appear as a
consequence of periodicity-induced destructive interference
at given frequencies. Formally, periodicity would require an
infinite set of strings, which is naturally not possible.
Nonetheless, we show that, for realistic values of linear mass
densities for the strings, only a few are needed to observe the
bandgaps. Therefore, this simple analog possibly allows stu-
dents to study the properties of photonic and phononic crys-
tals in an undergraduate physics laboratory. We highlight
that although a possible experimental setup for the system is
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provided here, its implementation may present some chal-
lenges. However, it is pedagogically more tangible to study
bandgaps emerging from the interference of mechanical
waves in a string rather than from more abstract electromag-
netic waves in material media, even from a theoretical point
of view.

II. METHODOLOGY

In this section, we introduce the transfer-matrix method
to study periodic strings. In addition to being easy to imple-
ment numerically, this method is powerful for studying 1D
wave propagation and is a convenient tool for dealing with
stratified media. It allows for the exact computation of
transmittance and reflectance in non-trivial configura-
tions,36–39 including photonic crystals.31,40 For an introduc-
tion to the transfer matrix formalism in the contexts of
photonics, plasmonics, and condensed matter systems, see
Refs. 41–43.

A. Interface between two different media

The starting point is to understand how waves behave at
the interface of two different media. In Fig. 1, we consider
two semi-infinite strings attached to each other at the origin,
whose linear mass densities are l1 and l2. Denoting the ver-
tical displacement of a generic point of the string at instant t
and space coordinate x by u(x, t) and assuming small slopes
(j@u=@xj � 1), u(x, t) obeys the following wave equation:

@2uðx; tÞ
@x2

� lðxÞ
T

@2uðx; tÞ
@t2

¼ 0; (1)

where the tension T will be considered as uniform through-
out the string, and lðxÞ is the linear mass density. We first
assume that lðxÞ ¼ l1 for x< 0, and lðxÞ ¼ l2 for x> 0.
Physical solutions must satisfy the boundary conditions44

u1ð0�; tÞ ¼ u2ð0þ; tÞ; (2)

@u1

@x
ð0�; tÞ ¼ @u2

@x
ð0þ; tÞ; (3)

where the index 1 applies to x< 0 and the index 2 applies to
x> 0.

To compute the transmittance and reflectance, we search
for harmonic solutions of frequency x for Eq. (1) restricted
to the boundary conditions (2) and (3). These can be written
as

u1ðx; tÞ ¼ A1eiðk1x�xtÞ þ B1e�iðk1xþxtÞ ðx < 0Þ; (4)

u2ðx; tÞ ¼ A2eiðk2x�xtÞ þ B2e�iðk2xþxtÞ ðx > 0Þ; (5)

where Ai and Bi (i¼ 1, 2) are coefficients to be determined.
The wave equation requires that

kj ¼ x

ffiffiffiffi
lj

T

r
with j ¼ 1; 2; (6)

and the boundary conditions give the following relations:

A1 þ B1 ¼ A2 þ B2; (7)

k1ðA1 � B1Þ ¼ k2ðA2 � B2Þ: (8)

Defining g ¼ k2=k1, this linear system of equations can be
cast into the matrix form:

A1

B1

� �
¼ 1

2

1þ g 1� g
1� g 1þ g

� �
A2

B2

� �
¼ T1!2

A2

B2

� �
;

(9)

where T1!2 is called the transfer matrix,42 and it relates the
coefficients of the incoming wave to those of the outgoing
wave at the interface. We can obtain the reflectance and
transmittance directly from the transfer matrix elements,
requiring no waves coming from the right (B2 ¼ 0). Note
that when l2 > l1, that is, whenever the wave goes from a
less refractive medium to a greater one, 1� g < 0, indicat-
ing that the reflected wave gains a phase of p.

Since the transmittance (reflectance) is the ratio between
the transmitted (reflected) and incident powers, we can write

T ¼ k2

k1

jA2j2

jA1j2
and R ¼ jB1j2

jA1j2
: (10)

Note that, since the wave velocity is different in each string,
the transmittance is not just the square of the ratio between
their amplitudes. From Eq. (9), we obtain 2A1 ¼ ð1þ gÞA2,
implying

T ¼ 4g

1þ gð Þ2
: (11)

Equation (9) also yields

R ¼ 1� g
1þ g

� �2

: (12)

B. Finite string segment insertion

Let us now analyze the case where a finite string segment
of length d and linear mass density l2 is inserted between
two semi-infinite strings of equal linear mass densities l1, as
in Fig. 2. The transmittance and reflectance can be obtained
through the total transfer matrix, relating the amplitudes of
the solutions in the intervals x< 0 and x> d. The additional
phase acquired by the propagation of the waves along the
finite string segment can be taken into account by the propa-
gation matrix

P2 ¼ e�ik2d 0

0 eik2d

� �
; (13)

Fig. 1. Single string made out of two semi-infinite strings with different lin-

ear mass densities l1 and l2.

Fig. 2. Finite string segment with length d and linear mass density l2 placed

between two semi-infinite strings of equal linear mass density l1.
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so that the total transfer matrix is

Ttot ¼ T1!2P2T2!1; (14)

with T2!1 ¼ T
�1
1!2 by definition. From the total transfer

matrix, the transmittance and reflectance are obtained in the
same way as in the previous example, yielding

T ¼ kf

ki

1

jTtot
11 j

2
; (15)

R ¼
����Ttot

21

Ttot
11

����
2

; (16)

where ki (kf) stands for the wavenumber in the semi-infinite
segment in the range x< 0 (x> d) and Ttot

ij (i; j ¼ 1; 2) are
the matrix elements of Ttot. In the particular configuration of
Fig. 2, the linear mass densities of the semi-infinite strings
were chosen to be the same, and, consequently, kf =ki ¼ 1.
Explicit calculation (see the Appendix) results in

T ¼ 1

1þ ðl
2
1 � l2

2Þ
2

l2
1l

2
2

sin2 xd

ffiffiffiffiffi
l2

T

r ! : (17)

This expression is plotted in Fig. 3, in which we show the
transmittance as a function of frequency, with l1 ¼ 2 g/m,
l2 ¼ 4l1, d¼ 10 cm, and T¼ 1 N. Note that the transmit-
tance never vanishes and presents a periodic behavior with a

period Dx satisfying Dk2d ¼ Dxd
ffiffiffiffiffiffiffiffiffiffi
l2=T

p
¼ p, where we

used k2 ¼ x
ffiffiffiffiffiffiffiffiffiffi
l2=T

p
. Also, whenever k2d ¼ np with n an

integer, we have full transmittance. This was also expected
from Eqs. (13) and (14) since, in this case, P2 and, conse-
quently, Ttot are 61 times the identity matrix. We invite the
reader to explain these features from the interference of mul-
tiple reflections and check how time-saving the transfer
matrix method is. Note that, in the limit l1 !1 for a fixed
l2, we have T ! 0, except at the frequencies for which we
have full transmittance. There is a close analogy between
Eq. (17) and the transmission of electromagnetic waves
propagating normally through a dielectric layer of finite

thickness, the latter being obtained by substituting
ffiffiffiffiffiffiffiffi
l=T

p
in

the former by the velocity of the light in the corresponding
dielectric medium.

C. Periodic string

Now, we reach the central purpose of this work: the study
of a string containing N segments of linear mass density l2

interspersed with segments characterized by linear mass den-
sity l1, as sketched in Fig. 4. Both types of segments are of
length d. At both ends, a semi-infinite string of linear mass
l1 is attached. By a straightforward generalization of the pre-
vious examples, the transfer matrix is now given by

Ttot ¼ T1!2 P2T
�1
1!2P1T1!2

� �N�1

P2T
�1
1!2; (18)

where P1 accounts for the propagation along segments of
linear mass density l1 and is obtained from Eq. (13) by
exchanging k2 by k1. In Sec. III, we study Eq. (18) analyti-
cally, but it is instructive for students to gain some intuition
by first analyzing some concrete examples, as we did in
Subsections II A and II B.

III. RESULTS AND DISCUSSIONS

In this section, we analyze the transmittance of the peri-
odic string described in Sec. II C. For this, we used the com-
putational environment Mathematica, but no specific
calculation techniques or any numerical approximations
were needed. Throughout this section, we chose d¼ 10 cm
and T¼ 1 N. In Fig. 5, we show the transmittance against the
frequency for l1 ¼ 2 g/m and l2 ¼ 4l1, which are typical
values for paracord type IA and paracord type II. Each curve
refers to a string with a given number N of inserted seg-
ments, the number of unit cells contained in the string. A
striking feature in Figs. 5(b) and 5(c) is the presence of peri-
odic frequency regions in which the transmittance goes to
zero, revealing the presence of bandgaps. Note that we do
not have bandgaps for N¼ 2 [Fig. 5(a)], although the trans-
mittance is already much lower for some frequencies. As N
increases, the transmission dips become more prominent,
and bandgaps can be identified even for a modest value of
N¼ 7 [Fig. 5(b)]. In addition, between these bandgaps, there
is an oscillatory behavior of the transmittance, and the fre-
quencies of these oscillations increase with N. We also see in
the panels that the frequencies where we have the dips in the
transmittance are essentially independent of N. Note that the
dips roughly come in pairs. Physically, this is due to the fact
that we have two different strings, setting up two natural fre-

quency scales xj � 1=d
ffiffiffiffiffiffiffiffiffiffi
T=lj

q
(j¼ 1, 2). These features will

be addressed in Sec. IV.
Figure 6 displays the transmittance against the density

ratio l2=l1 of the string segments, with l1 ¼ 2 g/m and
N¼ 7. The dashed gray line stresses that the outcome is full
transmittance for l2=l1 ¼ 1, as expected for a homogeneous
medium. This plot indicates that, for a given frequency, we
can always choose a density ratio value for which that fre-
quency is contained in a bandgap. We see that the gaps get
larger as the ratio l2=l1 increases, which is expected since

Fig. 3. Transmittance T as a function of frequency x for scattering by a sin-

gle finite inserted segment. Here, l1 ¼ 2 g/m, l2 ¼ 4l1, d¼ 10 cm, and

T¼ 1 N.

Fig. 4. The periodic string: A set of N segments with linear mass density l2

and size d alternating with segments of linear mass density l1 and of the

same size.
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the reflectivity in each segment increases in this case, as can
be seen in Eq. (12).

In Fig. 7(a), we display the transmittance as a function of
the wavenumbers of each string for N¼ 10. Consider straight
lines passing through the origin, with a constant slope given

by the ratio k2=k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l2=l1

p
. For convenience, but without

loss of generality, suppose that both l1 and l2 are fixed. In
this case, the wavenumber of each string can only change
through the frequency of the harmonic wave propagating
along the string. Thus, starting at the origin and moving
along any of these lines, we continuously increase the

frequency of the wave. As it is evident from Fig. 7(a), the
transmittance is always equal to 1 for k2=k1 ¼ 1, as expected,
since it implies l2 ¼ l1. However, even for slight deviations
of k2=k1 ¼ 1, we necessarily pass through bandgaps when
moving from the origin along a straight line. Note that the
crossed bandgaps are very narrow for small deviations from
k2=k1 ¼ 1 but wider bandgaps appear as we deviate from
unity. We can understand this result if we remember that
there is no reflection of the incident wave for a homogeneous
string. Nevertheless, as the ratio l2=l1 deviates from 1, the
existence of the “lattice” (the periodic string arrangement)
implies bandgaps start to appear. In this sense, this ratio mea-
sures the presence of the lattice and, consequently, how
much scattering occurs in the system. Indeed, for l2=l1 ¼ 1,
we have g¼ 1 and we see that the transfer matrix given in
Eq. (9) becomes the identity. It is worth noting that, even for
slopes very different from the unity, besides wide bandgaps,
we still have narrow ones, as shown in Fig. 5, which can be
understood as similar cuts in Fig. 7 with constant slopes con-
taining the origin. One could argue that there is a periodic
pattern in Fig. 5, while this is not apparent for generic cuts in
Fig. 7(a). Actually, as it will be described in Sec. IV, this
periodicity only holds if the ratio k1=k2 is rational. This is
true in Fig. 5 since l2 ¼ 4l1 but this is not the case for lines
crossing the origin with arbitrary slopes in Fig. 7(a).

Naively, one could think that Fig. 7(a) is symmetric with
respect to the k1¼ k2 line. However, this is not the case since
our physical system is not symmetric under the exchange
k2 $ k1 because the incident wave starts propagating
through a semi-infinite string with linear mass density l1

and, after crossing the “periodic string,” is transmitted to
another semi-infinite string with the same density l1.

There are two interesting limiting cases. The first one is
k2=k1 !1, which can be thought of as taking l2 !1 and
a finite value for l1. Figure 7(b) shows the transmittance as a
function of k2 for k1 � 0, and the outcome is zero transmit-
tance for large k2=k1, as expected since this limit corresponds
to the string 2 behaving as a fixed wall (Dirichlet boundary
condition). The second limiting case consists of k2 � k1,
which corresponds to select k2 � 0 in Fig. 7(a), resulting in
Fig. 7(c). In this limit, we do not have transmission, except
for increasingly narrower peaks around 2k2d=p equal to an
integer number. Physically, this happens because, in this
case, we have constructive interference in all strings with lin-
ear mass density l2.

IV. ANALYTICAL ORIGIN OF BANDGAPS

At this point, one might wonder why frequency gaps
appear and if it is possible to determine their position analyt-
ically. Physically, bandgaps appear due to destructive inter-
ferences among the waves that are transmitted at each
interface. Considering a small number of connections, like
the setup depicted in Fig. 2, this analysis can be carried out
without much calculation. We invite the reader to reobtain
Eq. (17) from this reasoning. However, for a large number of
strings, this procedure becomes complicated. Note that with
only two connections, as shown in Fig. 2, we do not obtain
gaps. Instead, we have frequencies that display dips in the
transmittance. Strictly speaking, for any finite N, the trans-
mittance is never zero, but, for large values of N, it is vanish-
ingly small in some frequency ranges. As can be seen in Fig.
5, N ¼ 7 is already a large value, given our chosen parame-
ters, and bandgaps appear with virtually no transmitted

Fig. 5. Transmittance T as a function of the frequency x for (a) N¼ 2, (b)

N¼ 7, and (c) N¼ 25. In all plots, we set l1 ¼ 2 g/m and l2 ¼ 4l1.

Fig. 6. Transmittance T as a function of the strings’ density ratio l2=l1 for

N¼ 7, x¼ 500 Hz, and l1 ¼ 2 g/m.
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wave. To be more precise, we may use the transfer matrix
method. An analytical evaluation of Eq. (18) is possible
thanks to periodicity and requires the ðN � 1Þ th power of
the matrix M ¼ P2T

�1
1!2P1T1!2. Since detM ¼ 1, we

have45

Mn¼
m11Un�1ðaÞ�Un�2ðaÞ m12Un�1ðaÞ

m21Un�1ðaÞ m22Un�1ðaÞ�Un�2ðaÞ

 !
;

(19)

where mij denotes the matrix elements of M; a
¼ ðm11 þ m22Þ=2, and UnðxÞ are the Chebyshev polynomials
of the second kind, given by

UnðxÞ ¼
sin ðnþ 1Þ cos�1ðxÞ
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p : (20)

Since cos�1ðxÞ is a purely imaginary number for jxj > 1 and
recalling that sin ðiaÞ ¼ �i sin hðaÞ, we conclude that, for
jxj > 1; UnðxÞ diverges exponentially for large n, leading to
a divergence in all elements of Ttot and, from Eq. (15), to a
zero transmittance. The explicit calculation of a shows that
the frequency bandgaps appear whenever the following con-
dition is satisfied:

jð1� nÞ cos ðk�dÞ þ ð1þ nÞ cos ðkþdÞj
2

> 1; (21)

with k6 ¼ k2 6 k1 and n ¼ ðl1 þ l2Þ= 2
ffiffiffiffiffiffiffiffiffiffi
l1l2

p
 �
. Outside

this range, UnðxÞ is an oscillating function, explaining the
oscillations in the transmittance observed in Sec. III. In Fig.
8, we observe that the gaps appear exactly in the regions
where a> 1.

Although we do not have an explicit solution of Eq.
(21), its main properties can be readily grasped. First, note
that, if k1¼ k2 (homogeneous string), a will become

cos2ð2kdÞ and the condition (21) is never satisfied.
Furthermore, when k2 and k1 are commensurable, a is a
periodic function, and the bandgaps’ locations and width
will obey the same periodicity. For strings composed of
appreciably different materials, that is, 2jl1 � l2j=
ðl1 þ l2Þ� 1, we have Un � en, and thus, from Eq. (16),
R � e�n. This explains why bandgaps are perceptible
even for small values of N in the previous section.
Equation (21) allows us to interpret some of the results we
obtained in Sec. III. There are two frequency scales
involved in this expression, given by the conditions
k6d ¼ 2p. In the particular case of Sec. III, we have
kþ ¼ 3k�, and thus, the function on the left-hand side of
Eq. (21) is periodic, explaining the regular behavior dis-
played in Fig. 5. When we plot the transmittance as a func-
tion of l2=l1, as in Fig. 6, we do not obtain periodic
behavior. This is expected since the linear density, differ-
ent from the frequency, does not depend linearly on the
wavenumber.

Fig. 7. Transmittance T as a function of (a) k1 and k2, (b) k2, for the slope k2 � k1, and (c) k1, for the slope k2 � k1. In all plots, N¼ 10.

Fig. 8. Transmittance T and the parameter a as a function of the frequency

x for l1 ¼ 2 g/m, l2 ¼ 4l1, and N¼ 25.
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V. EXPERIMENTAL SETUP PROPOSAL

To experimentally probe the frequency intervals for which
wave propagation is not allowed (the frequency bandgaps),
an adaptation of Melde’s original experiment46 can be
employed. In our experiment, Melde’s single homogeneous
string is replaced by a string made out of a periodic assembly
of two string segments with different linear mass densities,
as schematized in Fig. 4. In his original experiment, Melde
was looking for stationary waves. In our case, since the main
purpose is to observe bandgaps, we will focus on whether
the wave can propagate to the end of the string. In other
words, we will look for lack of oscillations in the segment
furthest from the oscillator.

To assemble the experiment, we suggest using an electric
vibrator, a signal generator to drive the vibrator, two strings
with different linear mass densities (paracord type IA and
paracord type II, for example), and hanging masses to con-
trol the tension.46,47 There are two different alternatives to
observe the amplitude of the oscillations on the last segment
of the string: the use of a camera with a ruler set behind the
string or of stroboscopic light.48

We suggest the use of paracords (or any nylon-based
cord) due to their ability to melt when exposed to heat as
one possibility to join two segments of different paracords
seamlessly. We believe that this method could make the
interface abrupt, respecting the boundary conditions used
in the theoretical modeling. This procedure must be
repeated to obtain the desired stratified medium with a spe-
cific number of segments. Considering seven repetitions to
generate the situation of Fig. 5(b), and d¼ 10 cm, the total
length of the interspersed ropes is 1.4 m. A 1.0 m paracord
can then be used as the semi-infinite string at the end of the
periodic assembly. As for the tension in the string, a hang-
ing object of mass 100 g can be used to create a tension of
about 1 N. Nevertheless, setting up this proposal might
present some challenges. In particular, when joining the
paracords through melting, some care should be taken not
to alter the flexibility of the string. In addition, caution
must also be taken to avoid the melted cord from shrinking
and forming a knot with an extra mass, since this would
not be in agreement with the boundary conditions
employed in our theoretical model for the string.
Controlling the length of the joined segments can also be
challenging. A possible alternative to the melting proce-
dure would be to create regions with greater linear mass
density by using a single long cord and wrapping an extra
cord around it.

As mentioned before, frequency bandgaps will correspond
to frequencies with no oscillations, or zero transmission, in
the last segment. Measurements of the wave amplitude in the
last segment will be performed as a function of the electric
vibrator frequency by using a camera (in the more expensive
version of the experimental setup) or stroboscopic light. The
use of a camera is straightforward, and analysis can be con-
ducted by using the freeware Tracker (for an introduction to
video analysis of experimental results using this freeware,
we refer the reader to Ref. 49). For low-cost alternatives, a
stroboscopic light can be employed, but only for visual
observation, since it does not measure the amplitude of the
oscillations on the last segment. The plot that relates the
oscillation amplitude with frequency presents bandgaps for
specific frequency ranges.

VI. FINAL REMARKS AND CONCLUSIONS

In this work, we employed the transfer matrix formalism
to investigate wave propagation through a periodic string as
an analog of photonic crystals. We determined the transmit-
tance and discussed its dependence on the relevant physical
parameters. The most remarkable result was the emergence
of prohibited frequency bandgaps, even for low numbers of
string segments. Ultimately, the system studied in this paper
offers a variety of interesting aspects to explore, providing
much physical intuition into quantum systems. We highlight
that our results are an exact analog for one-dimensional pho-
tonic and phononic crystals, as we have explored throughout
this paper. Therefore, the mechanical system we present here
is an excellent route to get undergraduate students in touch
with physical concepts rarely covered in standard textbooks.
It can also arouse students’ interest in other topics and moti-
vate further studies, as the techniques we use have applica-
tions in different physical situations and can be generalized
for more complex problems, as discussed throughout the
text.
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APPENDIX: EXPLICIT DERIVATION OF EQ. (17)

In this appendix, we obtain Eq. (17) employing the trans-
fer matrix formalism and illustrating its convenience. It suffi-
ces to calculate the matrix element Ttot

11 of the transfer matrix
Ttot, given by Eq. (14). We can write

Ttot ¼
1

2

1þ g 1� g

1� g 1þ g

" #
eik2d 0

0 e�ik2d

" #
T
�1
1!2: (A1)

Using that T
�1
1!2 ¼ T2!1, the previous equation yields

Ttot
11 ¼

1

4
eik2dð1þ gÞð1þ g�1Þ þ e�ik2dð1� gÞð1� g�1Þ
� 	

¼ 1

4k1k2

eik2dðk1 þ k2Þ2 � e�ik2dðk1 � k2Þ2
h i

: (A2)

In going to the second line, we used the definition g ¼ k2=k1

given in the main text. Consequently, using Eq. (15), the
transmittance is obtained from
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1

T ¼
1

16k2
1k2

2

ðk1 þ k2Þ2e�ik2d � ðk1 � k2Þ2eik2d
h i

� ðk1 þ k2Þ2eik2d � ðk1 � k2Þ2e�ik2d
h i

: (A3)

After lengthy but straightforward manipulations, we arrive at
Eq. (17).
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