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We show that there are an infinite number of tautochrone curves in addition to the cycloid solution

first obtained by Christiaan Huygens in 1658. We begin by reviewing the inverse problem of

finding the possible potential energy functions that lead to periodic motions of a particle whose

period is a given function of its mechanical energy. There are infinitely many such solutions, called

“sheared” potentials. As an interesting example, we show that a P€oschl-Teller potential and the

one-dimensional Morse potentials are sheared relative to one another for negative energies,

clarifying why they share the same oscillation periods for their bounded solutions. We then

consider periodic motions of a particle sliding without friction over a track around its minimum

under the influence of a constant gravitational field. After a brief historical survey of the

tautochrone problem we show that, given the oscillation period, there is an infinity of tracks that

lead to the same period. As a bonus, we show that there are infinitely many tautochrones. VC 2016

American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4963770]

I. INTRODUCTION

In classical mechanics, we find essentially two kinds of
problems: (i) fundamental (or direct) problems, in which the
forces on a system are given and we must obtain the possible
motions, and (ii) inverse problems, in which we know the
possible motions and must determine the forces that caused
them. Informally, we might say that in inverse problems we
attempt to find the causes by analyzing the effects. A humor-
ous way of stating the difference between these two kinds of
problems is given in Bohren and Huffmann’s book,1 which
states that in a direct problem, we are given a dragon and
want to determine its tracks, while in an inverse problem, we
start from the dragon’s tracks and attempt to infer what the
dragon is like.

Some historically relevant examples of inverse problems
are Newton’s determination of the gravitational force from
Kepler’s laws, and Rutherford’s discovery of the atomic
nucleus from the scattering of a particles from a sheet of
gold foil. Indeed, inverse problems are extremely frequent
even in contemporary physics. In high-energy Physics, for
instance, we try to understand the fundamental interactions
between elementary particles by observing the products of
their scattering. Oil prospecting methods in deep waters are
also inverse problems as they rely on analyzing the proper-
ties of waves (caused by small explosions at the surface of
the sea) reflected by the presence of interfaces separating
two different mediums within the surface of Earth.

Even in the case of a particle moving in one dimension
under the influence of a conservative force, analyzing inverse
problems may yield very surprising results. For instance,
consider the periodic motion of a point mass in a potential
well U(x). Although the knowledge of U(x) uniquely deter-
mines the period s of oscillation as a function of the mechan-
ical energy E, the opposite is not true: knowledge of sðEÞ
does not uniquely determine the potential energy that leads
to the known period. In fact, as explained in Sec. II, it can be
shown that a given function sðEÞ allows for infinitely many
potential wells that are “sheared” from one another.

This beautiful result was obtained in a quite ingenious
way by Landau and Lifshitz.2 Since then, it has been revis-
ited by some authors using different approaches. For

instance, Pippard3 presents a nice graphical demonstration of
sheared potentials, whereas Osypowski and Olsson4 provide
a different demonstration with the aid of Laplace transforms.
Recent developments on this topic, and analogous quantum
cases, can be found in Asorey et al.5

In this article, our main goal is to analyze inverse prob-
lems for periodic motions of a particle sliding on a friction-
less track contained in a vertical plane in a uniform
gravitational field. Similar to the sheared potentials, knowl-
edge of the track shape uniquely determines the period of
motion as a function of the maximum height achieved by the
particle. However, as we will demonstrate, an infinity of dif-
ferent curves lead to the same period for each maximum
height. We will show that these curves exhibit a geometrical
property akin to shearing that, to our knowledge, has not
been previously noted in the literature.
In particular, we are interested in the case where the

period of oscillation does not depend on the maximum height
(and therefore on the mechanical energy) of the system—the
tautochrone. Because this term is often associated with a
downward only motion, we employ the expression round-
trip tautochrone to specify our curves of interest. It has been
shown by Huygens in 1658 that the cycloid is a tautochrone
curve. A direct consequence of our analysis is that this is not
the sole solution of the tautochrone problem. In fact, there
are infinitely many round-trip tautochrone tracks, unfolding
new results for this three-century-old problem.
The remainder of the article is organized as follows. In

Sec. II, we review the basic concepts of sheared potentials
following Landau and Lifshitz.2 We also provide two non-
trivial examples of sheared potentials: (i) power-law poten-
tials and (ii) a P€oschl-Teller potential and the one-
dimensional Morse potentials. In Sec. III, inspired by the
properties exhibited by sheared potentials, we consider the
periodic motion of a particle sliding without friction on a
track contained in a vertical plane under a constant gravita-
tional force, and ask what curves yield the same period of
oscillation. We show that there are an infinite number of dif-
ferent curves associated with each period, and provide an
interpretation for the condition between these curves as a
new kind of shearing. In Sec. IV, we use the previous result
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to find an infinite family of tautochrone curves. Finally, we
make some final remarks in Sec. V.

II. BRIEF REVIEW OF SHEARED POTENTIAL

WELLS

Let us consider a particle of mass m moving along the x-
axis under the influence of the resultant force
FðxÞ ¼ �dUðxÞ=dx, where U(x) is a generic potential well
with a single minimum. Without loss of generality, let us
choose the point x¼ 0 as the minimum of the potential well
such that Uð0Þ ¼ 0. Suppose the particle moves with
mechanical energy E; the associated turning points are then
given by the roots of the algebraic equation E ¼ UðxÞ, which
we denote by x1 and x2. It is worth emphasizing that x1 and
x2 depend on E. Assuming x2 > x1, it is straightforward to
use conservation of (mechanical) energy to obtain the period
of oscillations as

s Eð Þ ¼
ffiffiffiffiffiffi

2m
p ðx2

x1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� U xð Þ
p : (1)

It is evident from this equation that the potential energy
U(x) and a given mechanical energy E uniquely determine
the period of the oscillations. In other words, the function
s : E ! sðEÞ is uniquely determined by knowledge of
function U : x ! UðxÞ.

In order to solve the inverse problem—given sðEÞ to find
the corresponding U(x)—it is tempting (and convenient) to
regard the coordinate x as a function of the potential U.
However, since the function U(x) is not injective, obtaining
its inverse requires defining two functions, namely,
xL : U 7!xLðUÞ, for the left branch of U(x) (x< 0) and
xR : U 7!xRðUÞ, for the right branch of U(x) (x � 0).
Performing a change of variables, we recast Eq. (1) into the
form

s Eð Þ ¼
ffiffiffiffiffiffi

2m
p ðE

0

dxR

dU

dU
ffiffiffiffiffiffiffiffiffiffiffiffiffi

E� U
p þ

ð0

E

dxL

dU

dU
ffiffiffiffiffiffiffiffiffiffiffiffiffi

E� U
p

" #

¼
ffiffiffiffiffiffi

2m
p ðE

0

dxR

dU
� dxL

dU

� �

dU
ffiffiffiffiffiffiffiffiffiffiffiffiffi

E� U
p :

(2)

To get rid of the integral on the right-hand side, we multiply
both sides of Eq. (2) by dE=

ffiffiffiffiffiffiffiffiffiffiffiffi

a� E
p

, where a is a constant
parameter, and then integrate from 0 to a. On the right-hand
side, we are then left with an integral in U followed by an
integral in E. Changing the order of integration, which
requires a subtle change in the integration limits in order to
preserve the integration region in the EU-plane, we obtain

ð

a

0

s Eð ÞdE
ffiffiffiffiffiffiffiffiffiffiffi

a�E
p ¼

ffiffiffiffiffiffi

2m
p ð

a

0

dxR

dU
� dxL

dU

� �

dU

ð

a

U

dE
ffiffiffiffiffiffiffiffiffiffiffi

a�E
p ffiffiffiffiffiffiffiffiffiffiffiffi

E�U
p :

(3)

Fortunately, the integral over E may be exactly calculated
and does not depend on U. In fact, it is straightforward to
show that this integral is equal to p (it can be computed, for
instance, by completing the square). As a consequence, the
integration on U is immediate. From these results, and
rewriting a ¼ U, we conclude that a given period function s

does not determine a single potential U, but rather an infinite
family of potentials satisfying the relation

xR Uð Þ � xL Uð Þ ¼ 1

p
ffiffiffiffiffiffi

2m
p

ðU

0

s Eð ÞdE
ffiffiffiffiffiffiffiffiffiffiffiffiffi

U � E
p : (4)

The result tells us that, provided two potential wells U(x)
and ~UðxÞ share the same width xRðUÞ � xLðUÞ ¼ ~xRðUÞ �
~xLðUÞ for every value of U, the periods of oscillation of a par-
ticle under the influence of these potentials will be described
by the same function sðEÞ. When this property is satisfied, we
say that the potential wells U(x) and ~UðxÞ are “sheared” rela-
tive to one another. However, if we further require the poten-
tial to be symmetric, so that xRðUÞ ¼ �xLðUÞ, then the
potential is uniquely determined by the period function s.
The presentation in this section was reproduced from

Landau and Lifshitz.2 Let us illustrate the previous results in
some non-trivial examples that are not usually dealt with in
the literature. We will start by illustrating the shearing pro-
cess for the power-law case. Then, we will show that the
Morse and the P€osch-Teller potentials are related by shearing
(for bounded motions).

A. Power law potentials

Sheared potentials derived from the parabolic potential
well have been considered by Ant�on and Brun.6 These
authors obtained anharmonic motions whose periods of
oscillations retain the property of being independent of the
energy (isochronous oscillations).
In this subsection, we shall consider the more general case

of the family of symmetric power law potentials given by

UðxÞ ¼ ajxj� , with a> 0 and �� 1, whose turning points are

x6 ¼ 6ðE=aÞ1=� . The period of oscillation may be computed
using Eq. (1)

s Eð Þ ¼
ffiffiffiffiffiffi

2m
p ðxþ

x�

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� ajxj�
p

¼ x
��=2
þ

ffiffiffiffiffiffi

8m

a

r

ðxþ

0

1� x

xþ

� ��
" #�1=2

dx;

(5)

where we have used the fact that the potential well is sym-
metric and that E ¼ ax�þ. Making a change of variables u ¼
ðx=xþÞ� and recalling the definition for xþ, we rewrite the
period as

s Eð Þ ¼ E 1=��1=2ð Þ
ffiffiffiffiffiffi

8m
p

a1=�
I �ð Þ
�

; (6)

where Ið�Þ ¼
Ð 1

0
u1=��1ð1� uÞ�1=2

du is simply a numerical
factor. Although the computation may be continued to give
an exact result,2,7 it suffices for the purpose of this article to
regard the period’s dependence on the energy. Moreover,
Eq. (6) shows that for �¼ 2 the exponent on E vanishes and,
as a consequence, the period is independent of the energy,
which is the case of the harmonic oscillator.
Let us denote by D the distance between the turning points

for a given energy E; that is, DðEÞ ¼ xþðEÞ � x�ðEÞ. We
may try to construct a sheared potential for UðxÞ ¼ ajxj� ,
denoted by ~UðxÞ, by defining different expressions for posi-
tive and negative x

~UðxÞ ¼ bjxj� : x < 0

cjxj� : x � 0

�

(7)

918 Am. J. Phys., Vol. 84, No. 12, December 2016 Terra, de Melo e Souza, and Farina 918

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

146.164.138.88 On: Tue, 22 Nov 2016 17:05:18



whose difference between the two turning points correspond-

ing to energy E is given by

~DðEÞ ¼ ~xþðEÞ � ~x�ðEÞ ¼ ðE=bÞ1=� þ ðE=cÞ1=� : (8)

Imposing the shearing condition, DðEÞ ¼ ~DðEÞ for any E,
we obtain the following condition between coefficients a, b
and c:

1

a1=�
¼ 1

2

1

b1=�
þ 1

c1=�

� �

: (9)

Indeed, if we explicitly compute the period of oscillations of
the particle under the influence of the potential well ~UðxÞ by
suitably adapting Eq. (6) we obtain

~s Eð Þ ¼ 1

2

1

b1=�
þ 1

c1=�

� �

E 1=��1=2ð Þ ffiffiffiffiffiffi

8m
p I �ð Þ

�
: (10)

Combining Eqs. (9) and (10), it becomes evident that
~sðEÞ ¼ sðEÞ, as expected since we required the two poten-
tials U(x) and ~UðxÞ to be sheared relative to each other.

B. Morse and P€oschl-Teller potentials

Let us now consider two less trivial potentials: the one-
dimensional Morse potential UMðxÞ and the P€oschl-Teller

potential UPTðxÞ, given by

UMðxÞ ¼ U0ðe�2ax � 2e�axÞ (11)

UPT xð Þ ¼ � U0

cosh2 axð Þ
; (12)

where U0 and a are positive constants (see Fig. 1). These two
potentials have importance beyond the context of classical
mechanics. For instance, the Morse potential plays an impor-

tant role in chemistry while the P€oschl-Teller potential
exhibits bizarre properties when treated quantum mechani-
cally (e.g., for appropriate values of the constant U0 this

potential becomes reflectionless8 for all values of E).
Our purpose in this subsection is to show that these two

potentials are sheared relative to each other, so that they
have the same period of oscillation for negative mechanical

energies. With this goal, let us start by determining the turn-
ing points of a particle moving in the Morse potential with a
negative mechanical energy E. These points can be obtained
by setting E ¼ UMðxÞ. Conveniently substituting u ¼ e�ax,

this equation leads to

u2 � 2u� E

U0

¼ 0; (13)

which has roots u6 ¼ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E=U0

p

, or

x6 ¼ 1

a
ln 16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E=U0

p

� 	

: (14)

Thus, the distance between these two turning points,
DMðEÞ ¼ xþðEÞ � x�ðEÞ, for an arbitrary negative energy is
given by

DM Eð Þ ¼ 1

a
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E=U0

p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E=U0

p

 !

¼ 1

a
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E=U0

p

� 	2

�E=U0

0

@

1

A

¼ 2

a
ln

ffiffiffiffiffiffiffiffiffiffi

�U0

E

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�U0

E
� 1

r

 !

:

(15)

Let us now do the same thing for the P€oschl-Teller poten-
tial. An analogous procedure to determine the roots of the
equation E ¼ UPTðxÞ yields

x6 ¼ 6 1

a
arcosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�U0=E
p

� 	

: (16)

Therefore, the distance between these two turning points
is given by

DPTðEÞ ¼ xþ � x� ¼ ð2=aÞarcoshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�U0=E
p

Þ : (17)

At first glance, Eqs. (15) and (17) do not appear to coincide.
However, making use of the mathematical identity
arcoshðxÞ ¼ lnðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

Þ, it becomes evident that
DMðEÞ ¼ DPTðEÞ. This means, as we had anticipated, that
these two potentials are sheared relative to each other for
�U0 < E < 0.
Because these two potentials are sheared (for

�U0 < E < 0), we can determine the period of oscillation
using either potential (they will both give the same answer).
Let us perform the calculation explicitly for the Morse poten-
tial. Using Eq. (1) and making the same change of variables
as before, u ¼ e�ax, we get

sM Eð Þ ¼
ffiffiffiffiffiffi

2m
p ðxþ

x�

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� U0 e�2ax � 2e�axð Þ
p

¼
ffiffiffiffiffiffiffiffiffiffi

2m

U0a
2

r

ðuþ

u�

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E=U0ð Þu2 þ 2uþ 1
p : (18)

Making another change of variables w ¼ ðu
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�E=U0

p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�U0=E
p

Þ then leads to

sM Eð Þ ¼
ffiffiffiffiffiffiffiffiffiffi

2m

U0a
2

r

ðwþ

w�

dw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 � U0=Eþ 1ð Þ
p

¼ p

a

ffiffiffiffiffiffi

2m

E

r

: (19)

We leave for the interested reader the task of checking
explicitly through an analogous calculation that the periodFig. 1. The Morse (solid) and P€oschl-Teller (dashed) potentials.
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associated to the P€oschl-Teller potential (also for
�U0 < E < 0) is indeed the same as found here.

C. General prescription for sheared potentials

After working through these examples, one might wonder
whether there is a general prescription for constructing
sheared potential wells. We can always begin with the sym-
metric potential well U(x) associated with a given period
function, which has xRðUÞ ¼ �xLðUÞ. Then, in order to
shear this potential we just displace the function horizontally
by dðUÞ to obtain new functions ~xRðUÞ and ~xLðUÞ for the
right-side and the left-side branches4,6

~xRðUÞ ¼ xRðUÞ þ dðUÞ
~xLðUÞ ¼ xLðUÞ þ dðUÞ:

�

(20)

Consequently, the difference between the corresponding
turning points is preserved for each value of U:
DðUÞ ¼ ~xRðUÞ � ~xLðUÞ ¼ xRðUÞ � xLðUÞ. Both ~xR and ~xL
must be single-valued. If this condition is met, calculating
the inverse piecewise function will give a new potential
~UðxÞ sheared from U(x).

III. SHEARING TRACKS

Though not very common, sheared potential wells are
very well established. Inspired by the surprising properties of
these potential wells, we now turn our attention to a different
problem that (as far as the authors know) has not yet been
investigated. Instead of the one-dimensional motion driven
by a given potential well U(x), we consider the two-
dimensional movement of a particle sliding along a friction-
less track under a constant gravitational force. As construct-
ing tracks is generally more feasible than supplying the
conditions for obtaining an arbitrary potential well, this tech-
nique may prove useful for actual visualization of the
motions under study.

We state the problem as follows: Let a particle be subject
solely to a uniform gravitational field, so that the gravita-
tional potential energy is U(y)¼mgy, and be constrained to
move along a smooth track contained in the xy-plane. Due to
this constraint, the motion has only one degree of freedom.
The shape of the track, described by the function
f : x 7! y ¼ f ðxÞ, determines the net force on the particle at
each point. For convenience, we choose a coordinate system
so that the single minimum of the track coincides with the
origin of the axes. Though the shape of the track uniquely
determines the period of the motion as a function of its
energy, sðEÞ, it is not obvious whether the knowledge of
sðEÞ uniquely determines the shape of the track along which
the motion takes place. In other words, it is natural to ask
what tracks give rise to oscillations with a given period func-
tion s : E 7! sðEÞ.

As will become evident later, it is convenient to use the
arclength coordinate s to parametrize the track instead of the
cartesian coordinate x, and henceforth we denote the shape
of the track by the function y : s 7! yðsÞ, with s¼ 0 at the ori-
gin (x ¼ y ¼ 0). Setting the maximum height H achieved by
the particle also sets the mechanical energy E¼mgH of the
system, and the turning points s1 and s2 are given by the
roots of the equation y(s)¼H. From the conservation of
mechanical energy, it is straightforward to obtain the corre-
sponding period of oscillation sðHÞ for an arbitrary H; this

period is simply twice the time spent by the particle to move
from s1 to s2 along the track. Denoting by v the scalar veloc-
ity of the particle at position s along the track, we have

s Hð Þ ¼ 2

ðs2

s1

ds

v

¼
ffiffiffi

2

g

s

ðs2

s1

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H � y sð Þ
p : (21)

Note that because s1 and s2 depend on H, the period s is a
function only of H, uniquely determined by knowledge of
the track y(s). Furthermore, this equation is written
completely in terms of variables with a clear geometrical
meaning.
We now wish to tackle the inverse problem, which is to

find the function y(s) that constrains the motion to a given
periodic behavior sðHÞ. We apply the same mathematical
procedure as given by Landau and Lifshitz to this new case.
We invert the function y(s) by means of the piecewise func-
tion split in sRðyÞ and sLðyÞ for the right and left branches of
the track, respectively, and integrate using a trick analogous
to that presented in Sec. II, to get

sR yð Þ � sL yð Þ ¼
1

p

ffiffiffi

g

2

r
ðy

0

s Hð ÞdH
ffiffiffiffiffiffiffiffiffiffiffiffi

y� H
p : (22)

The reader may note that this result is similar to Eq. (4), with
x ! s; U ! y, and E ! H, but we emphasize that it has a
different meaning and interpretation.
Equation (22) shows that knowledge of the period function

sðHÞ does not uniquely determine the shape of a track, but
rather its length LðyÞ ¼ sRðyÞ � sLðyÞ below every height
y> 0. Two different tracks y(s) and ~yðsÞ will lead to motions
with the same period function sðHÞ if sRðyÞ � sLðyÞ ¼
~sRðyÞ � ~sLðyÞ for every y. We call these tracks length-
sheared relative to one another in analogy with sheared
potentials. Concretely, this means that we can begin by con-
structing a track that has a particular functional form by
using, say, measuring tape against a wall, and measure the
period of oscillations of a small marble moving on it. Then
we carefully re-shape the tape so as to ensure that the length
of the tape under every horizontal line remains the same.
This transformation will generate a new track, related to the
first by length-shearing, and oscillations along this second
track will have the same period as the first one for every
maximum height H. This procedure is noteworthy, because a
similar strategy is not generally possible with sheared
potentials.
A comment is in order here. Suppose we consider only the

motions of a particle that moves down a frictionless track
characterized by a function f : x 7! y ¼ f ðxÞ and denote by
sðHÞ the time spent by the particle to reach the origin at
y¼ 0 after being released from rest at an arbitrary height
y¼H. Again, given the track f(x), the period sðHÞ is
uniquely determined. However, in this case, knowledge of
sðHÞ would also uniquely determine the shape of the track
(note that we are not talking about periodic motions here but
only downward motions). This problem was first solved by
Abel9 in 1826. In 2010, Mu~noz and Fern�andez-Anaya10 dis-
cussed Abel’s result for particular curves in which the corre-
sponding periods are proportional to a fractional power of H.
The same authors11 (with additional collaborators) also pre-
sent an illuminating set of direct and inverse problems
involving beads on a frictionless rigid wire in a paper from
2011.
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IV. ROUND-TRIP TAUTOCHRONES

A. Brief historical survey

Before we apply our previous result to the tautochrone
problem, it is worth saying a few words about the tauto-
chrone curve, as it played an important role in the history of
classical mechanics of the 17th century. At that time, mea-
suring latitude was relatively easy whereas measuring longi-
tude, which was of vital importance for sea navigations, was
a difficult task because it demanded a very accurate measure-
ment of time.12 The pendulum clock, constructed by the
great Dutch physicist, mathematician, and astronomer
Christiaan Huygens in 1658 (Galileo had already attempted
to construct a pendulum clock but he never completed it and
the patent for this invention was given to Huygens),
improved the accuracy of time measurements by at least one
order of magnitude, but this was not enough to guarantee a
safe measurement of longitude.

With the purpose of improving maritime chronometers,
Huygens started to look for an isochronous pendulum, since
he knew that the simple pendulum was isochronous only for
small amplitudes. A maritime chronometer constructed with
an isochronous pendulum would not change the period of its
oscillations even if the corresponding amplitudes changed
due to a rough sea. Huygens knew that if he put lateral
obstacles of appropriate shape near a simple pendulum he
could achieve his purpose but, unfortunately, he was not able
to find empirically the exact shape of such lateral obstacles.

Destiny then came to Huygens’ aid. Blaise Pascal, the
famous French physicist, mathematician, and philosopher,
who had abandoned science after a religious epiphany in
1654, had an unbearable toothache in 1658 that seemed to
resist any alleviating efforts. In a desperate attempt to forget
the pain, Pascal decided to focus on mathematics, particu-
larly on some problems dealing with the cycloid that the
French priest Mersenne had passed to him. Soon the pain dis-
appeared completely and Pascal interpreted this fact as a
divine sign for him to go on thinking about problems involv-
ing the cycloid. He ended up solving many of Mersenne’s
problems and even formulated a few new ones. But instead
of publishing these problems, he decided to propose a contest
composed of six problems involving the cycloid.

Many important scientists of that time were encouraged to
participate in that contest, including Huygens. And once he
had become an expert on the cycloid, he decided to check
and see, if by any chance, the cycloid would help solve the
isochronous pendulum problem. Fortunately, Huygens found
that the cycloid was a tautochrone—a curve on which a par-
ticle, sliding without friction and under the action of a con-
stant gravitational force, would have a period that is
independent of the height from which it was released. But he
still needed to find the shape of the lateral obstacles that
would make a pendulum describe a cycloidal trajectory. In
other words, he had to find out what we now call the evolute
of the cycloid. Again he tried the cycloid and once more he
was successful—the evolute of the cycloid is the cycloid
(shifted and out of phase)! In this particular case, Huygens
was very lucky; it is not common that a curve is the evolute
of itself. More details on this history can be found in
Gindikin’s book.13

Among other things, Huygens worked on trying to
improve clocks for almost four decades, but his cycloidal
pendulum clock, as well as his isochronous conical

pendulum clock, did not succeed as maritime chronometers.
However, his legacy on the developments of curves, evo-

lutes, and involutes, which had their origins in his study of
clocks, can still be seen in many different areas from differ-
ential geometry to quasicrystals.14

B. Obtaining the tautochrone curve

Equation (22) shows us how to construct tracks on which
particles oscillate with a given period sðHÞ. If we impose

that the track be symmetric, then it is uniquely determined.
We shall now apply the previously discussed techniques to
obtain the tracks on which the period does not depend on the

energy; that is, solutions to the tautochrone problem. As
these tracks must have upward and downward branches
allowing for periodic motion, we call them round-trip
tautochrones.
Choosing a suitable energy-independent period function

sðEÞ ¼ ffiffiffi

j
p

, where j is a positive constant with dimensions
of time squared, and demanding that the track be symmetric

allows us to compute Eq. (22) exactly

s yð Þ ¼
1

2p

ffiffiffiffiffiffi

gj

2

r
ðy

0

dH
ffiffiffiffiffiffiffiffiffiffiffiffi

y� H
p

¼ 1

2p

ffiffiffiffiffiffi

gj

2

r

2
ffiffiffi

y
p
 �

;

(23)

giving

y ¼ 2p2

jg
s2: (24)

The above result is in perfect analogy with the harmonic

oscillator. As expected, it also corresponds to the arclength
parametrization of a cycloid whose generating circle has
radius r ¼ jg=ð4pÞ2, namely, y ¼ ð1=8rÞs2. The period of

oscillation in terms of r and g is readily given by

s rð Þ ¼ 4p

ffiffiffi

r

g

r

: (25)

Although the cycloid is indeed the single symmetric round-

trip tautochrone, we may length-shear it in infinitely many
ways. We will now present some unconventional solutions to
the tautochrone problem, given by asymmetric tracks.

C. Half-cycloid branches

Let us begin with a symmetric cycloid whose generating

circle has radius r. We first attempt an asymmetric length-
sheared solution using cycloids with different generating
radii. We consider for the left-side and right-side branches,
respectively, ~rL and ~rR, in analogy to what was presented in

Sec. II A for coefficients of power-law potentials.
For both tracks to give rise to oscillations with equal peri-

ods, they must be length-sheared, so the total length of the
track must be the same below every height y. The relation

between the radii follows directly from applying the
constraint

sRðyÞ � sLðyÞ ¼ ~sRðyÞ � ~sLðyÞ : (26)

From the relation y ¼ ð1=8rÞs2, it follows immediately that
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2
ffiffi

r
p

¼
ffiffiffiffiffi

~rR
p

þ
ffiffiffiffiffi

~rL
p

: (27)

We present one such solution in Fig. 2.
Alternatively, we may obtain such a curve by imposing

that the periods of oscillations along both the symmetric and
the asymmetric tracks be the same (provided the maximum
height of the motion is contained in the lower branch of the
curve). The interested reader may easily verify, by means
of Eq. (25), that the condition obtained is the same as in
Eq. (27).

D. Completing tautochrones

Equation (22) allows for a very broad range of solutions
for round-trip tautochrones that are not restricted to branches
of cycloids. We may obtain such a track using a prescription
similar to the one presented in Sec. II C, namely, by applying
(to the original cycloidal track) equations analogous to those
written in Eq. (20), but now with a length-shearing function
dðyÞ, instead of the shearing function dðUÞ. With this proce-
dure in mind, if we choose an arbitrary function for the left
branch of the track, say ~yLðsÞ, we will obtain the correspond-
ing ~yR function for the right branch that completes the tauto-
chrone track.

Since any track constructed in this way will be length-
sheared from the original cycloidal track (which corresponds
to the single symmetric tautochrone), we see that this proce-
dure provides a method for generating as many tautochrone
tracks as we want. All tracks constructed in this way will
share the property of isochronous motion—all of them will
lead to periodic motions that are independent of the maxi-
mum height.

An explicit example is appropriate here. Let us set the
left branch of the track to the semi-cubical parabola ~yL ¼
að�xÞ3=2 with a> 0. We compute the arclength in order to
parametrize it conveniently

~sL yð Þ ¼
8

27a2
9a4=3

4
y2=3 þ 1

� �3=2

� 1

" #

: (28)

We may set the period of oscillation by adjusting the radius r
of the original cycloid, 8ry ¼ s2, in accordance with Eq.
(25). So by imposing that the new track satisfies the length-
shearing relation to this cycloid, the right-side branch of the
track is given by the equation

~sRðyÞ ¼ 2
ffiffiffiffiffiffiffi

8ry
p

þ ~sLðyÞ : (29)

A solution to the track having a semi-cubical parabola for its
left branch is shown in Fig. 3.

Since we chose an arbitrary function for the left branch of
the tautochrone, the time it spends on each branch will
depend on the maximum height. However, the geometrical
condition given by length-shearing guarantees that the differ-
ence of time the moving particle spends on the left branch
(with respect to the cycloid) will be exactly compensated for
on the right branch.

V. FINAL REMARKS

In the scope of one-dimensional systems in classical
mechanics, we have reviewed the result that oscillations with
a given period as a function of the energy correspond not to
one, but to an infinite family of potential wells, which satisfy
the shearing condition. Particularly, isochronous oscillations
are not a property associated uniquely to the quadratic poten-
tial well (harmonic potential) but to any potential well that is
sheared from it.
Then we have extended this result to the motions of a par-

ticle moving along frictionless tracks contained in a vertical
plane and subject to a constant gravitational force. We have
shown that by imposing a new condition—length-shearing—
to the tracks, their corresponding periods, as functions of the
maximum height achieved by the particle, will be the same.
Applying the length-shearing condition to a cycloid, the orig-
inal tautochrone discovered by Huygens in the 17th century,
we have shown that it is possible to obtain an infinite family
of solutions to the tautochrone problem.
The actual construction of tracks can be accomplished

using a 3-D printer and is far more practical than providing
the conditions for a certain potential energy U(x) to drive the
motion in a given period. Also, it is worth mentioning that
the techniques employed in this work are accessible to
undergraduate students. Hence the information presented
here can be useful for enriching courses on both theoretical
and experimental university-level classical mechanics.
Finally, for pedagogical reasons, we would like to outline

the most important aspects of the present work:

• The study of sheared potentials, although being a well
established problem, still holds a few surprises, such as
the shearing relation between the Morse and P€oschl-Teller
potentials.

• There is a new condition that is analogous to shearing in
one-dimensional potential wells, called length-shearing,
which can be applied to frictionless tracks contained in
vertical planes.

• There is not one, but an infinite number of tautochrones.
• We can make a tautochrone by choosing any monotonic
function y : x 7! yðxÞ for the shape of one of its branches,
and then computing the corresponding complementary

Fig. 2. Symmetric cycloid (dashed) and an isochronous asymmetric track

made from different cycloids (solid).

Fig. 3. Cycloid (dashed) and an isoperiodical asymmetric tautochrone hav-

ing a semicubical parabola for its left branch (solid). In this example, we

have set r¼ 1/8 and a¼ 2.
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branch simply by imposing that they are length-sheared to
the cycloid.

We leave for the interested reader the task of exploring
new examples of tracks exhibiting different properties
regarding the periods of their respective driven motions, fur-
ther applying length-shearing.
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