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I. INTRODUCTION

Though Maxwell’s theory for electromagnetic phenomena was established in the second

half of the nineteenth century [1], learning (or teaching) electromagnetism is far from being

an easy task. Even if we particularize to the electrostatic theory, we will still come across

many subtle and bizarre situations [2–4]. A quite unexpected one is the possibility of elec-

trostatic attraction between two equally charged conducting and isolated spheres of different

radius if they are close enough but without touching each other [2]. This is far from being

an intuitive phenomenon. After all, we grew up with the naive ideia that two charged bodies

with charges of the same sign are expected to repel each other. There is a vast list of subtle

situations where intuition fails to give the correct answer, even qualitatively. As a second

example, though the electrostatic force that acts on a point charge in front of an infinite

grounded conducting plane is equal to the force exerted on the charge by its image, the

same is not true for the electrostatic energy of the system. In fact, the electrostatic energy

for the atom-plane system is given by one half the electrostatic energy between the charge

and its image [3]. The same factor of one half will appear if we consider a point charge

in front of a grounded conducting sphere. As a last example, consider an electric dipole

of negligible dimensions in front of an infinite grounded conducting plane with a circular

hole and suppose the dipole is oriented along the axis perpendicular to the plane passing

through the center of the hole. It can be shown that, for short distances from the hole, the

electrostatic force exerted on the dipole by the induced charges on the conducting plane is

repulsive [4]. And this is far indeed from being intuitive indeed.

Our purpose here is to discuss some subtleties that arise when deducing the expressions

for the electrostatic energy of continuous charge distributions. It is a common procedure

in the literature to obtain these expressions starting with a system composed by a finite

number of point charges and then making the appropriate generalization to the case of con-

tinuous charge distributions [5–9]. However, although quite natural, this procedure involves

mathematical steps which are far from obvious. Particularly, we shall show that though

a consistent procedure for volume and surface charge distributions is possible, the same is

not true for a linear charge distribution. In fact, we shall demonstrate that an electrostatic

energy can not even be associated to a linear charge distribution, since this energy would be

divergent, just as it is in the case of a point charge. Instead of pointing out the subtleties in
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these deductions, some textbooks just skip them, excluding from the discussion important

conceptual points. It is our goal to fill this gap in the literature and present a more detailed

calculation of the electrostatic energy for continuous charge distributions. We think that

facing these subtleties (instead of avoiding them) is a great opportunity for the students to

get a deeper understanding of the subject.

This paper is organized as follows. In the next section we briefly review the derivation of

the electrostatic energy for a system composed of N point charges. In section III we show

in detail how this result can be generalized to a volume charge distribution. In section IV

we discuss the case of a surface charge distribution. In section V we show explicitly that

the electrostatic energy associated to a linear charge distribution is infinite, so that it does

not make sense to talk about the electrostatic energy of a linear charge distribution (in the

same way it lacks of meaning to talk about the electrostatic energy of a point charge). In

section VI we use dimensional analysis to arrive at the same conclusions established in the

three precedent sections. Final remarks are left for section VII.

II. ELECTROSTATIC ENERGY OF N POINT CHARGES

A possible way to define the electrostatic energy of a given configuration of charges,

denoted by C, is to consider it as the external work required to assemble this configuration

from a standard configuration, Cs, to which we assign a null value to the energy - slowly

enough so that radiation losses are negligible. The standard configuration Cs is usually

chosen as that for which all charges are infinitely separated from each other and in both the

standard and final configurations the charges are assumed to be at rest. Mathematically we

write

U(C) = W ext
Cs→C . (1)

Since there is no net change in the kinetic energy of the system when we compare the final

and initial configurations, the work-kinetic energy theorem allows us to write

W ext
Cs→C +W elet

Cs→C = 0 =⇒ W ext
Cs→C = −W elet

Cs→C , (2)

where W elet
Cs→C is the work performed by the electrostatic forces during the process Cs → C.

A comment is in order here. With the purpose of showing that W ext
Cs→C = −W elet

Cs→C , some

authors [6] assume that during this process the total force acting on each charged particle
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vanishes, so that the external forces are exactly compensated by the electrostatic ones.

However, this assumption is not necessary as we have just shown. Indeed, all the surplus

energy delivered by the external forces to put the charges in movement are taken back

when stopping them. Hence, we see that computing the external work during the process

is equivalent to computing the electrostatic work during that process (apart from a global

minus sign). Since electrostatic forces are conservative, the work W elet
Cs→C does not depend

on the process chosen to bring the charges from the initial (standard) configuration to

the final one, but only on the initial and final charge configurations. We are then free to

choose the most convenient process to compute the electrostatic energy of a generic charge

configuration.

Suppose that the N point charges of the system, qi, i = 1, 2, ..., N , are brought from

infinity to their assigned final positions (see Figure 1) by the following process: we first

bring charge q1 to its final position, r1, in the absence of all other charges. In this case, the

corresponding external work that is done during the process is obviously W ext
q1 = −W elet

q1 = 0.

Then, we bring charge q2 to its final position, r2, in the presence of only charge q1. Let us

denote by W ext
q2

the external work that is done during this process. Next, we bring charge q3

to its final position, r3, and let W ext
q3 be the external work that is done during this process,

and so on.

Figure 1. Final configuration of N point charges that are brought from infinity following a generic

process.

The electrostatic energy of the final configuration is then given by

UN(C) = W ext
q1 +W ext

q2 +W ext
q3 + ...+W ext

qN
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= −W elet
q1

−W elet
q2

−W elet
q3

+ ...−W elet
qN

, (3)

where we denoted by W elet
qi

, i = 1, 2, ..., N , the work that is done by the total eletrostatic

force acting on charge qi during the process of bringing this charge from infinity to its

final position ri. The first term on the r.h.s. of the previous equation is zero, as already

mentioned, since there are no electrostatic forces acting on q1. The second term is given by

W ext
q2

= −q2

∫

r2

∞

E1(r
′
2) · dr′2 = q2V1(r2) , (4)

where V1(r2) is the electrostatic potential created by charge q1 at the final position of charge

q2, so that,

W ext
q2

=
1

4πǫ0

q2q1
|r2 − r1|

. (5)

For the third term on the r.h.s. of Eq. (3), recalling that when charge q3 is brought from

infinity to its final position both charges q1 and q2 exert force on charge q3, we have

W ext
q3

= −q3

∫

r3

∞

E1(r
′
3) · dr′3 − q3

∫

r3

∞

E2(r
′
3) · dr′3

= q3V1(r3) + q3V2(r3)

=
1

4πǫ0

q3q1
|r3 − r1|

+
1

4πǫ0

q3q2
|r3 − r2|

. (6)

Analogous expressions can be obtained for the remaining terms. A straightforward calcula-

tion gives, for the total electrostatic energy of the N point charges, the result [5]

UN (C) =
1

2

N
∑

j=1

j 6=i

N
∑

i=1

1

4πǫ0

qiqj
|rj − ri|

, (7)

where the sum involves all possible pairs (i, j) except those with i = j. The factor 1/2

that appears in front of the summation is to avoid double counting. In the next sections

we will show that the previous expression can be generalize to volume and surface charge

distributions but not for a linear charge distribution since, in this case, the electrostatic

potential diverges at points on the distribution.
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III. ELECTROSTATIC ENERGY OF VOLUME CHARGE DISTRIBUTIONS

In order to generalize Eq.(7) to a volume charge distribution we start by identifying

N
∑

j=1

j 6=i

1

4πǫ0

qj
|rj − ri|

. (8)

as the electrostatic potential created by all charges, except charge qi, evaluated at position

ri. Let us denote this expression by Φi(ri). Note that the divergent contribution of the

electrostatic potential created by the charge qi at its own position is excluded from the

previous summation. Recall that we are interested only in the energy cost of bringing all

point charges from infinity to the final configuration, and this does not include the energy

cost of creating the point charges in the first place (this would demand an infinite amount

of energy). In terms of Φi(ri) the electrostatic energy of the system, given by Eq.(7), takes

the form

UN (C) =
1

2

N
∑

i=1

qiΦi(ri) . (9)

In order to generalize the previous equation for the case of a volume charge distribution

described by a charge density ρ, we follow the usual steps, namely: we consider qi as an

infinitesimal amount of charge occupying an infinitesimal volume ∆Vi, centered at position

ri, and then we take the limit in which N −→ ∞, ∆Vi −→ 0, assuming that the charge

distribution occupies a finite region R. Mathematically, we have

qi =⇒ ∆qi = ρ(ri)∆Vi (10)

so that the electrostatic potential energy of the continuous system is given by the following

limit

Uρ(C) = lim
N→∞
∆Vi→0

1

2

N
∑

i=1

ρ(ri)Φi(ri)∆Vi . (11)

In the previous equation,Φi(ri) must be interpreted as the electrostatic potential created

by all charges of the distribution (∆q1, ∆q2, ...), except charge ∆qi whose center is located

at position ri, evaluated at position ri. It is common in the literature to write this limit

without any further explanation as

Uρ(C) =
1

2

∫

R

ρ(r)Φ(r) dV , (12)
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where Φ(r) is the electrostatic potential at the position r generated by all charges of the

distribution, with none of them excluded. This sentence embraces all the subtlety of the

procedure. Indeed, in the discrete case Φi(ri) represented the potential generated by all

charges except the one located at the position where the potential was to be evaluated

(charge qi), as it is evident in Eq. (9). As mentioned before, this means we avoid the

infinite self-energy of the point charges present in the system. However, when we adopt a

continuous model for matter, and deal with volume charge distributions, we do not expect

to face such difficulties, since there are no point charges in the system. However, though this

argument seems quite intuitive and plausible, one must provide a rigorous demonstration

that it is permissible to consider in Eq. (12) the total electrostatic potential at position r,

Φ(r), without making any kind of subtraction (to remove the contribution of an infinitesimal

region around r). The simplest way to demonstrate that it is fair to make this assumption is

to show that the electrostatic potential of a small sphere of finite charge density ρ evaluated

at its center goes to zero when the volume of the sphere shrinks to zero. It is reasonable

that this result holds for the case of a volume charge distribution. Indeed, it holds not only

for a volume distribution, but also for a surface charge distribution, as we will show in a

moment. However, it does not hold for a linear charge distribution.

Let us then evaluate the electrostatic potential generated by a charged sphere of radius a

at its centre assuming the sphere is charged with a finite charge density ρ (see Figure 2) and

demonstrate that it vanishes in the limit a −→ 0, provided ρ is held constant throughout. At

this point, it is important to remark that, by keeping ρ constant, we end up with a vanishing

charge in the sphere as we shrink it to a point. This procedure should not be confused with

the one where the charge in the sphere is itself held constant while the volume of the sphere

goes to zero (this case would clearly lead to an infinite charge density, which in this case is

none less than the point charge limit). Since we are interested in the limit a −→ 0, we may

assume without loss of generality a uniform charge density.

Choosing the origin of the coordinate system at the center of the sphere and using spher-

ical coordinates, the electrostatic potential created by the sphere at its centre, denoted by

Φsph
a (0), may be immediately calculated,

Φsph
a (0) =

ρ

4πǫ0

∫ a

0

∫ π

0

∫ 2π

0

r2 sin θ

r
dφdθdr =

ρa2

2ǫ0
. (13)
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Figure 2. Sphere of radius a charged with a uniform volume charge density ρ. The electrostatic

potential at the center of the sphere is denoted by Φsph
a (0).

Taking the limit a −→ 0 we obtain

lim
a→0

Φsph
a (0) = 0 , (14)

which means that in Eq.(12) we may consider Φ(r) (the electrostatic potential generated by

all charges of the distribution), as we wanted to demonstrate. In the next section we will

show that the same is true for surface charge distributions.

IV. ELECTROSTATIC ENERGY OF SURFACE CHARGE DISTRIBUTIONS

In this section, we generalize Eq. (9) to the case of a surface charge distribution described

by a surface charge density σ. The procedure is totally analogous to that followed in the

previous section, except for the fact that, instead of Eq. (10), we must write

qi =⇒ ∆qi = σ(ri)∆Ai , (15)

where now ∆Ai is the area of a small surface element of the charge distribution centered

at ri. Hence, taking the appropriate limits, the electrostatic potential energy of the surface

charge distribution is given by the following limit

Uσ(C) = lim
N→∞
∆Ai→0

1

2

N
∑

i=1

σ(ri)Φi(ri)∆Ai . (16)

As before, it is common in the literature to write this limit without any further explanation

as

Uρ(C) =
1

2

∫

S

σ(r)Φ(r) dA . (17)
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While the summation in Eq. (16) excludes the potential generated by the charge ∆qi at

position ri, in the integrand of Eq. (17) Φ(r) is the potential generated by all charges of the

distribution. To ensure that the last equation represents indeed the potential energy of the

surface charge distribution we must evaluate the electrostatic potential created by a finite

charged disc of radius a at its centre (see Figure 3) and show that it vanishes when we take

the limit a −→ 0.

Figure 3. Disc of radius a charged with a uniform surface charge density σ. The electrostatic

potential at the center of the disc is denoted by Φdisc
a (0).

Again, since the limit a −→ 0 is to be taken, we may assume without loss of generality a

uniform surface charge density σ. Therefore, choosing the origin of the coordinate system at

the centre of the disc and using polar coordinates, the electrostatic potential at the centre

of the disc, Φdisc
a (0), can be straightforwardly calculated as follows,

Φdisc
a (0) =

σ

4πǫ0

∫ a

0

∫ 2π

0

1

r
rdθdr =

σa

2ǫ0
. (18)

A direct inspection of this equation shows that the electrostatic potential of a uniformly

charged disc at its centre vanishes when its radius is taken to zero. As in the volumetric

case, this result enables us to write the potential energy of the surface charge distribution

in terms of the electrostatic potential created by all charges. This explains why Eq. (17)

is correct. Nevertheless, note that while for a volume charge density the potential created

by the sphere at its centre vanishes with a2, for a surface charge distribution the potential

created by the disc at its centre vanishes linearly in a (slower that in the volumetric case).
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We leave to the interested reader the demonstration that the results obtained in the present

section and in the previous one are robust regarding shape, that is: if instead of a sphere or

a disc we shrink to a point a region or a surface with arbitrary shapes we will still obtain

vanishing potentials at that point, as expected (this can be shown with the aid of the Squeeze

Theorem of calculus).

V. LINEAR CHARGE DISTRIBUTION

In this section, in contrast to what has been done in the two previous sections, we show

that it is not possible to generalize Eq. (9) to the case of a linear charge distribution.

Naively, we could think that the electrostatic potential energy of a charged curve L with a

linear charge density λ would be given by

Uλ(C) =
1

2

∫

L

λ(r)Φ(r) dl , (19)

as suggested, for instance, in Ref.[5]. However, as we shall see, the above expression is diver-

gent and there is no way to extract a finite quantity from this expression to be interpreted

as the electrostatic potential energy of the linear distribution. The simplest way that could

demonstrate this is to follow the same procedure as before, namely: to evaluate the electro-

static potential created by a uniformly charged bar of length 2a and linear charge density λ

at its centre and then take the limit a −→ 0. We choose the origin of the coordinate system

at the centre of the bar and let the OZ axis be perpendicular to the bar, as shown in Figure

4.

Figure 4. Bar of length 2a uniformly charged with linear charge density λ. The electrostatic

potential at a generic point of the positive OZ semi-axis is denoted by Φbar
a (z).
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The electrostatic potential created by the bar at a generic point of the positive OZ semiaxis

is given by

Φbar
a (z) =

λ

4πǫ0

∫ a

−a

dℓ√
ℓ2 + z2

=
λ

2πǫ0

∫ a

0

dℓ√
ℓ2 + z2

, (20)

where we used the fact that the integrand in the previous equation is an even function of ℓ.

In order to evaluate the above integral, we make the variable substitution ℓ = z tgξ (hence

dℓ = z sec2ξ dξ), so that

∫ a

0

dℓ√
ℓ2 + z2

=

∫ tg−1
(a/z)

0

secξ dξ

= ln

(

secξ + tgξ

)
∣

∣

∣

∣

∣

tg−1
(a/z)

0

= ln

{

√

1 +
(a

z

)2

+
a

z

}

. (21)

Substituting (21) into (20), we obtain the electrostatic potential at a generic point of the

positive semiaxis OZ, namely,

Φbar
a (z) =

λ

2πǫ0
ln

{

√

1 +
(a

z

)2

+
a

z

}

(22)

In order to obtain the electrostatic potential at the centre of the bar, we must take z −→ 0

in the last equation, but this yields a divergent result (note that this occurs even before

taking the limit a → 0):

lim
z→0

Φbar
a (z) =

λ

2πǫ0
ln∞ = ∞ ! (23)

This result shows that the electrostatic energy of a linear charge distribution is divergent

(as it is for point charges), so that the naive expression given by Eq. (19) is incorrect.

This expression does not make sense, though its counterparts for volume and surface charge

distributions are correct.

VI. DIMENSIONAL ANALYSIS

Our results could have been anticipated by a careful dimensional analysis. Indeed, the

electrostatic potential created by a uniformly charged sphere of radius a at its centre can

depend only on ρ, ǫ0 and a. Therefore, it must be proportional to ρa2/ǫ0, as we obtained
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in Eq.(13) (for points outside the centre there will be another parameter with dimension of

length and dimensional analysis alone no longer suffices to obtain the potential).

For a homogeneous disc an analogous argument shows that the potential at its centre

must be proportional to σa/ǫ0, as obtained in Eq.(18.) Therefore, we arrive at the same

conclusions as before, namely, that in both cases the electrostatic potentials at the centres

of the sphere and the disc vanish in the limit a −→ 0.

For the linear case, dimensional analysis teaches us that the electrostatic potential must be

proportional to λ/ǫ0 and hence independent of a. The only way for the electrostatic potential

at the centre of the bar to be independent of a is to be divergent. An explanation for that

is the following: suppose you double the length of a uniformly charged bar. Obviously, your

are summing finite contributions to the electrostatic potential at the centre of the bar. But

the result must remain the same, since from dimensional analysis it can not depend on a.

The only “number” that remains the same as we increase it by a finite value is infinity, so

that the self-energy of a linear charge distribution is divergent.

VII. FINAL REMARKS

In this paper we have discussed the subtleties that appear when we generalize the ex-

pression for the electrostatic potential energy of a system composed by N point charges

to continuous media. We started by showing in more detail than is presented in standard

textbooks [5–9] that the naive extensions (12) and (17) are indeed correct for volume and

surface charge distributions. Then, we obtained the main result of this paper, namely, we

showed explicitly that an analogous naive extension fails for linear charge distributions be-

cause the electrostatic potential diverges at points of a linear distribution, so that it is not

even defined at these points. We arrived at the same conclusions by using only dimensional

arguments. A lesson to be learned here is that the continuous limit may sometimes be a

very subtle matter and must be treated with extreme caution. In physics we often generalize

results based on intuitive assumptions, but this procedure may sometimes be misleading.

As a final remark, we should emphasize that all discussions made in this paper hold as well

for the newtonian gravity.
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