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1. Introduction

Given the vertical circle shown in figure 1, suppose we release a body initially at rest
at point A, letting it fall freely along the vertical diameter AC. At the same time we
release another body from point B, also starting from rest, and have it slide down
without friction along chord BC. Then, the two bodies reach point C at the same
instant. Any chord will do; there is no restriction on point B other than being on the
circle. This effect was described by Galileo in a letter to his friend Guidobaldo del
Monte [1] and also in Two New Sciences [2]. It is sometimes called Galileo’s theorem
[3] or Galileo’s paradox [4], and we will use the latter form as it conveys better the
surprise that many people show when they first hear about it (of course there is no
paradox, it’s just something very non-intuitive). As other “paradoxes” have been
ascribed to Galileo (the infinity paradox, the hydrostatic paradox) we refer to the one
of interest here as the kinematical paradox.
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Figure 1. Galileo’s paradox circle. Diameter AC is vertical and particles can
move along chords like AB or BC. Angle θ is positive when point B is to the
right of diameter AC.

Galileo’s kinematical paradox has an interesting consequence: if several bodies
initially at rest are released simultaneously from the top of the circle, each one sliding
along a different chord starting at A (like AB in figure 1), then at a given instant their
positions will be on an expanding circle whose centre moves down with acceleration
g/2. This was already discussed by Galileo in [2], and a more pedagogically oriented
presentation can be found in [5, 6].

It is natural to inquire how resistive forces affect Galileo’s kinematical paradox.
Here, we analyse the dynamical role of such forces in two cases: sliding friction and
a resistive force proportional to velocity. We treat each case separately in sections 3
and 4, and study their combined effect in section 5. We also identify, in section 6, the
class of resistive forces that preserve the paradox. Let us start by reviewing Galileo’s



Galileo’s kinematical paradox and the role of resistive forces 3

paradox.

2. Galileo’s kinematical paradox: a brief review

Consider the vertical circle shown in figure 1 and a bead that slides without friction
along chord AB, starting from rest at point A. At time t the position s(t) of the bead
along the chord, measured from point A, is given by

s =
gt2

2
cos θ , (1)

where the release time is t = 0 and θ is the angle ∠CAB between the chord and the
vertical direction. The time it takes for the bead to reach point B is, then,

tAB =

√
2sAB

g cos θ
, (2)

where sAB is the length of chord AB. From Thales’ theorem, ∠ABC is a right angle,
so that

sAB = D cos θ (3)

where D is the diameter of the circle. Hence,

tAB =

√
2D

g
, (4)

independent of θ and, consequently, of the choice of point B. Beads going down
along different chords will hit the rim of the circle at the same time. This is Galileo’s
kinematical paradox. A similar argument shows that the descent time along chord
BC is the same for any choice of B, which was the original formulation of the paradox
by Galileo in his letter to Guidobaldo del Monte [1].

Another way of presenting Galileo’s kinematical paradox is, as we have already
mentioned, through the expanding circle of simultaneity [5]. Consider the Cartesian
axes shown in figure 1. The coordinates on these axes of a bead that slides along the
chord AB are

x = s sin θ =
gt2

4
sin 2θ , (5)

and

y = s cos θ =
gt2

4
(1 + cos 2θ) , (6)

where we have used the familiar trigonometric relations

2 sin θ cos θ = sin 2θ , (7)

2 cos2 θ = 1 + cos 2θ . (8)

It is easily shown (see [5]) that equations (5) and (6) lead to

x2 +

(
y − gt2

4

)2

=

(
gt2

4

)2

, (9)

which represents a circle with time-dependent radius given by

R(t) =
gt2

4
. (10)
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The centre of this circle moves vertically along the diameter AC with acceleration g/2.
This means that, at a given time, particles starting from A along different chords

all lie on a circle, the synchronous curve for this problem. In particular, at

τ =

√
2D

g
, (11)

the time for free fall along the diameter AC, the synchronous circle coincides with the
geometric circle ABC. Figure 2 shows the simultaneity circle for different values of
t/τ . Links to video demonstrations of these effects can be found in [5, 6].

A x

B

C
y

Figure 2. Synchronous curves for particles sliding down along chords originating
at A with different orientations. Curves are shown for t/τ = 0.2, 0.4, 0.6, 0.8, and
1.0, where τ is the time of free fall from A to C.

3. Sliding friction

Let us now consider the effect of resistive forces on Galileo’s kinematical paradox and
on the expanding synchronous circle. In a concrete realization of this system, the
chords can be replaced, for instance, by thin wires and the circle by a bicycle wheel
as discussed in [5]. Friction is then an unavoidable part of the dynamics and must be
dealt with. We start by discussing the sliding friction on a bead that moves down on
a chord. Suppose the kinematical friction coefficient between the bead and the chord
(a plastic or metallic wire) is µk. For positive angles θ between the chord and the
vertical direction, the equation of motion reads

s̈ = g (cos θ − µk sin θ) . (12)

Note that in order for the bead to slide down we must have θ ≤ θmax, where

θmax = arctan(1/µk) . (13)
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For θ < 0 we must change the sign of the second term in (12), otherwise the friction
force will point in the wrong direction. In this case the equation of motion is

s̈ = g (cos θ + µk sin θ) , −θmax < θ < 0 . (14)

Assuming for the moment that θ ≥ 0, it is straightforward to solve (12) with
initial conditions s(0) = 0 and ṡ(0) = 0, and find

s =
gt2

2
(cos θ − µk sin θ) . (15)

The time it takes for a bead to go down chord AB is, then,

tAB =

√
2sAB

g(cos θ − µk sin θ)
(16)

and using (3) we obtain

tAB =

√
2D/g

1− µk tan θ
. (17)

Similarly, for negative angles θ the result is

tAB =

√
2D/g

1 + µk tan θ
. (18)

We see that, because of sliding friction, beads that slide down the steeper chords
(small |θ|) reach the rim of the circle sooner than the ones following chords of milder
slope (large |θ|). Thus, Galileo’s paradox no longer holds and the synchronous curve
is not a circle anymore.

In spite of this, the synchronous curve still has a simple geometrical description:
as we will see, it is the union of two circular arcs. To show this we write the Cartesian
coordinates of the position of the bead as

x = s sin θ =
gt2

4
[sin 2θ − µk (1− cos 2θ)] , (19)

and

y = s cos θ =
gt2

4
[(1 + cos 2θ)− µk sin 2θ] , (20)

where we have taken θ ≥ 0 and used (15) for s(t). Eliminating θ from (19) and (20)
we obtain (

x+ µk
gt2

4

)2

+

(
y − gt2

4

)2

=

(
gt2

4

)2 (
1 + µk

2
)
, (21)

the equation of a circle of radius

R(t) =
gt2

4

√
1 + µk2 . (22)

In contrast with the zero friction case, the centre of this circle is not on the y-axis. As
t increases it moves down with acceleration (g/2)

√
1 + µk2 along a straight line that

makes a negative angle θ = −θc with the vertical direction, where

θc = arctan(µk) . (23)
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As we have considered only chords with inclination θ ≥ 0, the circle described by
(21) gives the synchronous curve for x ≥ 0 only. For negative values of θ a similar
calculation provides the synchronous curve for x < 0, the result being(

x− µk
gt2

4

)2

+

(
y − gt2

4

)2

=

(
gt2

4

)2 (
1 + µk

2
)
. (24)

Again this is an expanding circle, with the same radius as in the positive θ case. The
centre of this circle also goes down following a straight line, with the same acceleration
as before. The difference is that now this line makes a positive angle θ = θc with the
y-axis.

The complete synchronous curve is then the union of the x > 0 and x < 0 arcs of
the circles defined in (21) and (24), respectively, resulting in a spindle-shaped contour.
Figure 3 shows synchronous curves for µk = 0.5. They are drawn for times t/τ = 0.2,
0.4, 0.6, 0.8, and 1.0, where τ is the time of free fall along the vertical diameter given
in (11).
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Figure 3. Synchronous curves for µk = 0.50. The curves correspond to times
t/τ = 0.2, 0.4, 0.6, 0.8, and 1.0, where τ is the time of free fall along the vertical
diameter.

Another way of viewing the synchronous curves is attained by rescaling the x an
y coordinates by the factor gt2/4:

x̃ = x/(gt2/4) , ỹ = y/(gt2/4) . (25)

In the rescaled coordinates the circles (21) and (24) become time-independent and
read, respectively,

(x̃+ µk)2 + (ỹ − 1)2 = 1 + µk
2 , (26)

and

(x̃− µk)2 + (ỹ − 1)2 = 1 + µk
2 . (27)
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These rescaled circles are shown by the dashed lines in figure 4. The arcs that form
the time-independent synchronous curve in the rescaled coordinates are indicated by
the solid lines. Both circles have radius

√
1 + µk2 and their centres have coordinates

(x̃, ỹ) = (±µk, 1). The circles cross on the vertical axis, at ỹ = 0 and ỹ = 2, the upper
and lower limits of the synchronous curve. The scaling makes it easy to check how
changes in the friction coefficient affect the synchronous curves. In particular we note
that the simultaneity circle discussed in the previous section is recovered in the limit
of zero friction.

x

y

2µk
~

~

Figure 4. The time-independent synchronous curve in the rescaled coordinates
(solid arcs). The dashed lines represent the circles defined by (26) and (27). The

circles are displaced from each other by 2µk, have radius
√

1 + µk2 and cross at
ỹ = 0 and ỹ = 2.

4. Motion under a resistive force proportional to velocity

Other types of dissipative forces can also produce simple synchronous curves and even
restore Galileo’s kinematical paradox. Let us consider the case of a resistive force
linearly proportional to velocity. The equation of motion of a particle moving on
chord AB (see figure 1) is, then,

s̈ = g cos θ − γṡ , (28)

where γ is the dissipation coefficient. With initial conditions s(0) = 0 and ṡ(0) = 0
we find that

s(t) =

[
g

γ
t− g

γ2
(
1− e−γt

)]
cos θ . (29)

Using (3) for the chord length sAB, the descent time tAB from A to B is obtained
solving the equation

D =
g

γ
tAB −

g

γ2
(
1− e−γtAB

)
. (30)
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The angle θ does not appear in (30), implying that the descent time is the same for
all chords. Thus, Galileo’s kinematical paradox persists in the presence of a linear
resistive force.

Because of Galileo’s paradox, the synchronous curves are again circles, as in the
case of no dissipation. The only difference is that, now, the radius of the circle of
simultaneity increases more slowly due to the resistive force. Proceeding as before we
obtain that the circle of simultaneity is given by

x2 + [y −R(t)]
2

= R2(t) , (31)

where

R(t) =
g

2γ
t− g

2γ2
(
1− e−γt

)
. (32)

In figure 5 we show the circles of simultaneity when the dissipation coefficient is
such that γτ = 0.50. As before, τ is the time of free fall along the vertical diameter.
The circles are drawn for t/τ = 0.2, 0.4, 0.6, 0.8, and 1.0.
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Figure 5. Synchronous circles for particles going down chords under the action
of a linear resistive force. The dissipation coefficient is such that γτ = 0.50, where
τ is the time of free fall along the vertical diameter. The curves correspond to
times t/τ = 0.2, 0.4, 0.6, 0.8, and 1.0. The marks on the y-axis indicate the
position that a free falling body would have at these times.

It is interesting to note that the descent time tAB can be written in terms of the
Lambert W function [7, 8]. To show this we rewrite (30) as

F (γtAB − 1− γ2D/g) = −e−1−γ2D/g (33)

where

F (ω) = ωeω . (34)

Lambert’s function W (q) is the inverse of F (ω),

F (ω) = q ⇒ ω = W (q) , (35)
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so that we can obtain tAB from (33) as

tAB =
1

γ
+
γD

g
+

1

γ
W
(
−e−1−γ2D/g

)
. (36)

A plot of F (ω) is shown in figure 6. The function has a minimum at ω = −1,
with F (−1) = −1/e. As ω increases, F (ω) decreases monotonically if ω ≤ −1 and
increases monotonically if ω ≥ −1. These two parts of the curve are represented by
dashed and solid lines in figure 6, each part defining a different branch of the inverse
function W (q). The principal branch W0(q) corresponds to W (q) ≥ −1, and branch
W−1(q) corresponds to W (q) ≤ −1. (The complex Lambert function has an infinite
number of branches [7], usually called Wn, n = 0,±1,±2, . . .) When there is no risk
of confusion, W0 is referred to as W .
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Figure 6. Plot of F (ω) = ωeω . The monotonically decreasing and increasing
branches are shown by the dashed and solid curves.

In order to compute tAB from (36) we still have to determine which of the two
real branches of W must be used. A simple way of doing this is by examining the
small γ limit, which involves studying how W (q) behaves in the vicinity of the branch
point q = −1/e. Expanding F (ω) in a Taylor series about the minimum ω = −1 we
obtain, to second order, that

F (ω) = −1

e
+

1

2e
(ω + 1)2 + · · · . (37)

This truncated series is easily inverted and we find that for q ≈ −1/e the two branches
of W are given by

W0(q) ≈ −1 +
√

2(eq + 1) (38)

and

W−1(q) ≈ −1−
√

2(eq + 1). (39)

Substituting these results in (36) we find that in the limit γ → 0 the descent time is
tAB = ±

√
2D/g, where the plus or minus sign corresponds to using W0 or W−1. Thus,

as the descent time should always be positive, we must use the principal branch W0

when computing tAB from (36).
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5. Motion under sliding friction and resistive force proportional to
velocity

As a final case, let us consider the combined effects of sliding friction and a resistive
force proportional to velocity. The equation of motion along chord AB is, then,

s̈ = g(cos θ − µk sin θ)− γṡ (40)

where, as before, µk and γ are the kinetic friction and dissipation coefficients. We
are assuming that 0 ≤ θ ≤ θmax, where θmax is given by (13). For negative angles
−θmax ≤ θ < 0 we must change the sign in front of µk, as discussed in section 3. For
initial conditions s(0) = 0 and ṡ(0) = 0, the solution of (40) is

s(t) =

[
g

γ
t− g

γ2
(
1− e−γt

)]
(cos θ − µk sin θ) . (41)

Using (3) for the chord length sAB, the descent time tAB from A to B is given by the
solution of

D =

[
g

γ
tAB −

g

γ2
(
1− e−γtAB

)]
(1− µk tan θ) . (42)

Again with help of Lambert’s function we obtain

tAB =
1

γ
W0

[
− exp

(
−1− Dγ2

g(1− µk tan |θ|)

)]
+

1

γ
+

Dγ

g(1− µk tan |θ|)
(43)

where the absolute value of θ takes care of the sign change for negative angles.
The descent time is θ-dependent, meaning that Galileo’s paradox has disappeared

and the synchronous curve is no longer a circle. Proceeding as in section 3 we find
that the synchronous curve is given by

[x±X(t)]
2

+ [y − Y (t)]
2

= R2(t) , (44)

where the positive (negative) sign corresponds to positive (negative) values of θ, and

Y (t) =
g

2γ
t− g

2γ2
(
1− e−γt

)
, (45)

X(t) = µk Y (t) , (46)

R(t) =
√

1 + µk2 Y (t) . (47)

As in the case where only sliding friction is acting, the synchronous curve is spindle-
shaped, being formed by two arcs. Figure 7 shows the synchronous curves for γτ = 0.50
and µk = 0.36, drawn for times t/τ = 0.2, 0.4, 0.6, 0.8, and 1.0, where τ is the time
of free fall along the vertical diameter.

Rescaling the x and y coordinates by Y (t),

x̃ = x/Y (t) , ỹ = y/Y (t) . (48)

we obtain, once again, a very simple description of the synchronous curve:

(x̃± µk)2 + (ỹ − 1)2 = 1 + µk
2 . (49)

This is the same curve we found when sliding friction was the only resistive force, see
(26), (27) and figure 4.
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Figure 7. Synchronous curves for γτ = 0.50 and µk = 0.36. The curves
correspond to times t/τ = 0.2, 0.4, 0.6, 0.8, and 1.0, where τ is the time of
free fall along AC. The marks on the y-axis indicate the position that a free
falling body would have at these times.

6. Which dissipative forces preserve Galileo’s paradox?

Resistive forces may depend on the velocity in ways that are more complicated than the
linear relation we have studied, and it is interesting to investigate if other functional
forms will allow for Galileo’s paradox. In order to do this, let us consider a resistive
force given by some unspecified function f(v) of the velocity v, so that the equation
of motion of a body on a chord of inclination θ reads

s̈ = g cos θ − f(ṡ) . (50)

As before, initial conditions are s(0) = 0 and ṡ(0) = 0. Galileo’s paradox implies that
the synchronous curves must be circles given by

x2 + [y −R(t)]
2

= R2(t) , (51)

where 2R(t) is the solution of (50) for θ = 0. Substituting x = s sin θ and y = s cos θ
for the coordinates in (51) we find that

s = 2R(t) cos θ . (52)

Taking this result into the equation of motion (50) we obtain

f [ 2Ṙ(t) cos θ ]

2 cos θ
=
g

2
− R̈(t) . (53)

The right-hand side of (53) is independent of θ, and so must be the left-hand side. It
is easy to show that the latter happens only if f(v) = γv, where γ is a constant. Thus,
Galileo’s paradox is preserved only in the case where the resistive force is proportional
to the velocity.
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7. Final remarks

We have studied the effects of dissipative forces on Galileo’s kinematical paradox and
the associated synchronous circle. More specifically, we investigated the role played by
sliding friction and by a resistive force proportional to velocity. We found that sliding
friction eliminates Galileo’s paradox but still produces very simple synchronous curves,
composed by circular arcs from two intersecting circles. In the case of a resistive force
proportional to velocity, Galileo’s paradox, somewhat surprisingly, is preserved and
the synchronous curves keep the circular form. An interesting feature of this analysis
is that it involves the application of the Lambert W function, a very useful multivalued
function which perhaps is not as widely known as it should. We have also considered
the combination of the two types of dissipative forces and found that, as in the case
when sliding friction acts alone, Galileo’ paradox breaks down but the synchronous
curves have a simple geometrical description in terms of two circular arcs. These
results suggest that Galileo’s kinematical paradox persists only when the dissipative
force depends linearly on the velocity, and we have shown that this is indeed the case.
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