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Abstract
A simple example of renormalization in electrostatics accessible to
undergraduate students is presented as a complement to a letter recently
published in this journal.

In a recent letter to this journal, Corbò [1] called the reader’s attention to the fact that
renormalization techniques can be applied to classical fields. As examples, two problems
involving the renormalization of the electrostatic potential are discussed. The following
example should be considered as a complement to the ones presented in [1] and discusses the
renormalization of electrostatic energy.

Suppose that from a classical point of view an atom is modelled in the following way:
a central pointlike electric charge whose magnitude is equal to Ze, where Z is the atomic
number and e = 1.6 × 10−19 C is the elementary quantum of electric charge, surrounded by
a concentric thin spherical shell of radius R and electric charge equal to −Ze. The partial
or total ionization of this classical atom is equivalent to the removal of part of or the entire
negative charge from the thin spherical shell. Mathematically, we can express this process
by considering the substitution −Ze → −Ze(1 − α), where α is a real number in the closed
interval [0, 1]. Our goal will be to show that variation of the electrostatic energy is given by
the (renormalized) expression

�U = Ufinal − Uinitial = 1

2

α2Z2e2

4πε0R
. (1)

In the region 0 < r < R, the electric field is that of a point charge

E = Ze

4πε0r2
êr , 0 < r < R. (2)

The contribution of the spherical shell to the inner electric field is zero as we can easily prove
by making use of Gauss’ law and the spherical symmetry of the problem. In the region r > R,
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using again Gauss’ law and the spherical symmetry argument, we can prove that the electric
field is zero. The electrostatic energy can be calculated with the formula

U = ε0

2

∫
R

E2 dv. (3)

where R is the region of integration, dv is the element of volume and ε0 is the vacuum
permittivity constant. The electrostatic energy before ionization is

U = ε0

2

∫ R

0

(
Ze

4πε0r2

)2

4πr2 dr = 1

2

Z2e2

4πε0

∫ R

0

dr

r2

= 1

2

Z2e2

4πε0

[
−1

r

]R

0

. (4)

As expected, we have a singular point at r = 0 because the function 1/r diverges at the
origin. In order to circumvent this problem, we introduce a finite non-null radius δ (i.e. a
regularization parameter) for the point charge and write

U = 1

2

Z2e2

4πε0

∫ R

δ

dr

r2
= 1

2

Z2e2

4πε0

[
−1

r

]R

δ

. (5)

It follows that

Uinitial = −1

2

Z2e2

4πε0R
+

1

2

Z2e2

4πε0δ
. (6)

We should not worry about the δ-dependent term. At the end of the calculation this term
will be naturally cancelled out. When the ‘atom’ is ionized, part of the charge of the shell is
removed to infinity—this is our definition of ionization—which means that the electric field in
the region r > R is no longer zero! The net charge involved by a spherical Gaussian surface
with radius r > R will be q(r) = Ze − Ze(1 − α) = α Ze. Using Gauss’ law once more, we
obtain

E(r) = αZe

4πε0r2
êr , R < r < ∞. (7)

The electric field for 0 < r < R continues to be that of a point charge. Therefore, the final
electrostatic energy will be

Ufinal = −1

2

Z2e2

4πε0R
+

1

2

Z2e2

4πε0δ
+

ε0

2

∫ ∞

R

(
αZe

4πε0r2

)2

4πr2 dr. (8)

The variation of the electrostatic energy �U after evaluating the integral is

�U = Ufinal − Uinitial = 1

2

α2Z2e2

4πε0R
, (9)

which is the finite result we were looking for. Observe that the additional constant introduced
to control the divergence at the origin does not influence the final result. As is well known, this
divergence is associated with the concept of point charge. Simple examples in a conceptually
simpler context, as the ones discussed in [1] and the one discussed here, can be the best way
to introduce a difficult concept to our students.
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