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I. INTRODUCTION

The derivation found in most textbooks of the electromag-
netic fields generated by arbitrary sources in vacuum starts
by calculating the corresponding electromagnetic potentials
�see, for instance, Ref. 1 and 2, or 3�. After the retarded
potentials are obtained �assuming the Lorenz gauge� the
electromagnetic fields are calculated with the aid of the rela-
tions E=−��− �1 /c���A /�t� and B=��A �we use Gauss-
ian units�. The resulting expressions for the fields are usually
called Jefimenko’s equations because they appeared for the
first time in the textbook by Jefimenko.4 Jefimenko’s equa-
tions are obtained in Ref. 1 from the retarded potentials and
are obtained directly from Maxwell’s equations in Ref. 5.
�Heras6 had already derived Jefimenko’s equations directly
from Maxwell’s equations.� References 8 and 7 obtain a less
common form of Jefimenko’s equations for the electric field,
but this form is more convenient for studying radiation.

Griffiths and Heald9 illustrate Jefimenko’s equations by
obtaining the standard Liénard-Wiechert fields for a point
charge. Ton10 provides an alternative derivation of Jefimen-
ko’s equations and three applications, including that of a
point charge in arbitrary motion. Heras has generalized Jefi-
menko’s equations to include magnetic monopoles and ob-
tained the electric and magnetic fields of a particle with both
electric and magnetic charge in arbitrary motion.11 He has
also discussed Jefimenko’s equations in material media to
obtain the electric and magnetic fields of a dipole in arbitrary
motion12 and has derived Jefimenko’s equations from Max-
well’s equations using the retarded Green function of the
wave equation.6

The main purpose of this paper is to enlarge the list of
problems that are solved directly from Jefimenko’s equations
�or the equivalent�. Our procedure avoids completely the use
of electromagnetic potentials. Specifically, we shall obtain
the electric dipole, the magnetic dipole, and the electric
quadrupole terms of the multipole expansion due to the ra-
diation fields of an arbitrary localized source.

II. JEFIMENKO’S EQUATIONS FROM MAXWELL’S
EQUATIONS

In this section we present three methods of calculating
Jefimenko’s equations directly from Maxwell’s equations.
The first method closely follows Ref. 5. The second method
makes use of a Fourier transformation as discussed by Ref.

16. For our purposes it suffices to do a Fourier transforma-
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tion only in the temporal coordinate. We shall see that this
method, although longer than the previous one, avoids any
possibility of misleading manipulations with retarded quan-
tities. The subtleties in calculations involving retarded quan-
tities have been discussed in Refs. 13–15. We then present an
alternative method that is a variation of the first one; the
main difference is the order of integration.

A. Direct calculation using the retarded Green function

The following approach is similar to that in Refs. 5, 6, and
13. Maxwell’s equations with sources in vacuum are given
by

� · E = 4�� , �1�

� · B = 0, �2�

� � E = −
1

c

�B

�t
, �3�

� � B =
4�

c
J +

1

c

�E

�t
. �4�

If we take the curl of Eq. �3� and the time derivative of Eq.
�4�, we obtain

��2 −
1

c2

�2

�t2�E = 4���� +
1

c2

�J

�t
� , �5�

where we have used �� ���F�=��� ·F�−�2F, with �2F
= ��2Fx�x̂+ ��2Fy�ŷ+ ��2Fz�ẑ with F an arbitrary function.
Similarly, we obtain for the magnetic field

��2 −
1

c2

�2

�t2�B = −
4�

c
J . �6�

The solutions of Eqs. �5� and �6� can be obtained with the aid
of the retarded Green function Gret�x , t ;x� , t��, which satis-
fies the inhomogeneous differential equation

��2 −
1

c2

�2

�t2�Gret�x,t;x�,t�� = ��x − x����t − t�� , �7�

and is zero for t− t��0. The solution for Gret for t− t��0 is
3
given by
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Gret�x,t;x�,t�� = −
1

4�

��t� − �t − �x − x��/c��
�x − x��

= −
1

4�

��t� − �t − R/c��
R

, �8�

where R��R�= �x−x��. With the help of Eq. �8� the solution
of Eq. �5� can be written as

E�x,t� = −	 dx�

R
	 dt���t� − �t − R/c��

������x�,t�� +
1

c2

�J�x�,t��
�t�

� �9�

=−	 dx�
�����

R
−	 dx�

�J̇�
c2R

, �10�

where the notation �¯� means that the quantity inside the
brackets is a function of x� and is evaluated at the retarded
time t�= t− �x−x�� /c.

At this point much care must be taken, because �����
� �����. Due to a bad choice of notation, the author in Ref.
13 incorrectly used the quantity ����� as if it were �����
and, after an integration by parts, an incomplete result for the
electric field was found, as pointed out in Ref. 14. The cor-

rect relation is given by �����= �����+ R̂��̇� /c �see, for in-
stance, Ref. 5�. If we use the correct relation, Eq. �10� be-
comes

E�x,t� = −	 dx�
�����

R
+	 dx�

��̇�R̂
cR

−	 dx�
�J̇�
c2R

�11�

=	 dx�
���R̂
R2 +	 dx�

��̇�R̂
cR

−	 dx�
�J̇�
c2R

. �12�

In the last step we integrated by parts and discarded surface
terms, because the charge distribution is localized. Equation
�12� is one of the Jefimenko’s equations.4,5 Note the retarded
character of the electric field. The first term on the right-hand
side of Eq. �12� is the retarded Coulomb term.

As shown by Panofsky and Phillips,7 there is an equivalent
way of deriving Eq. �12� for the electric field which mani-
festly shows the transverse character of the radiation field. A
discussion of this point can be found in Ref. 8; we will
discuss this point in Sec. III.

To obtain the desired expression for the magnetic field, we
use the retarded Green function in Eq. �8� to rewrite Eq. �6�
as

B�x,t� =
1

c
	 dx�

R
	 dt���t� − �t − R/c���� � J�x�,t��

=
1

c
	 dx�

R
��� � J� . �13�

If we use the relation ��� �J�= ����J�+ �R̂ /c�� �J̇� �see
Ref. 5�, Eq. �13� takes the form

B�x,t� =
1

c
	 dx�

R
�� � �J� −

1

c2 	 dx�
R̂ � �J̇�

R
. �14�
We integrate by parts and obtain
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B�x,t� =
1

c
	 dx��� � � �J�

R
� +

1

c
	 dx��J� � ��� 1

R
�

−
1

c2 	 dx�
R̂ � �J̇�

R
. �15�

The first term on the right-hand side of Eq. �15� vanishes
because the current distribution is localized in space. We use

the relation ���1 /R�=−R̂ /R2 to obtain

B�x,t� =	 dx�
 �J� � R̂

cR2 +
�J̇� � R̂

c2R
� . �16�

The first term on the right-hand side of Eq. �15� is the re-
tarded Biot-Savart term; the transverse radiation field is con-
tained in the last term. Equations �12� and �16� are the Jefi-
menko equations.

B. Fourier method

In Sec. II A we showed how to obtain Jefimenko’s equa-
tions by a careful treatment of the derivatives of retarded
quantities. This point is crucial—spatial derivatives cannot
be commuted with retarding the functions, because the re-
tarded function depends on the coordinates in its time argu-
ment. A simple way to circumvent this difficulty is to use
Fourier transforms and factor out the time dependence of the
functions so these subtleties are not encountered. We will
show how to obtain the electric field and will leave the deri-
vation of the magnetic field as an exercise for the interested
reader �see, for example, Ref. 16�.

We start with the electric field given by Eq. �9�. The term
involving the current density takes the form after integration
over time,

−	 dx�

R
	 dt���t� − �t − R/c��

1

c2

�J

�t�
�x�,t��

= −	 dx�
�J̇�
c2R

. �17�

We introduce the Fourier transformation �̃�x� ,�� of ��x� , t��
as ��x� , t��=��̃�x� ,��e−i�t�d� and express the remaining
contribution to the electric field in Eq. �10� as

−	 dx�

R
	 dt���t� − �t − R/c������x�,t��

= −	 dx�

R
	 dt���t� − �t − R/c��

�	 d����̃�x�,��e−i�t� �18a�

=−	 d�e−i�t	 dx�
eikR

R
���̃�x�,�� �18b�

=−	 d�e−i�t	 dx�
��� eikR

R
�̃�x�,���

− �̃�x�,��� R̂
2 − ik

R̂�eikR� �18c�

R R
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=	 dx�
R̂

R2 	 d��̃�x�,��e−i��t−R/c�

+	 dx�
R̂

cR
	 d��̃�x�,���− i��e−i��t−R/c� �18d�

=	 dx�
R̂���
R2 +	 dx�

R̂��̇�
cR

. �18e�

To obtain Eq. �18c� we integrated by parts; to obtain Eq.
�18d� we discarded the surface term.

We combine Eq. �9� with Eqs. �17� and �18� and obtain the
electric field generated by arbitrary �but localized� sources,
namely, Eq. �12�. On the right-hand side of Eq. �18a� it is
obvious that �� acts only on �̃�x� ,��. Hence, in Eq. �18b�
there is no possibility of thinking that �� also acts on the
exponential eikR. The subtleties of dealing with retarded
quantities are circumvented by the Fourier method.

C. Postponing the delta-function integration

When we are faced with integrals involving delta func-
tions, we are usually tempted to do them first, because they
are so easy. To derive Jefimenko’s equation for the electric
field given by Eq. �12�, this procedure is not optimum. Let us
start with Eq. �9�:

E�x,t� = −	 dx�

R
	 dt���t� − �t − R/c��

������x�,t�� +
1

c2

�J

�t�
�x�,t��� . �19�

Instead of first performing the time integration using the
Dirac delta function, we integrate by parts on both terms on
the right-hand side of Eq. �19� so that it takes the form

E�x,t� =	 dx�	 dt�
���t� − �t − R/c��

�� 1

Rc
��x�,t����R +

1

Rc2J�x�,t���
+ ��t� − �t − R/c�����

1

R
���x�,t��� . �20�

If we use the relations ��R=−R̂ and ��1 /R= R̂ /R2, we ob-
tain

E�x,t� =	 dx�	 dt�
���t� − �t − R/c���−
R̂

Rc
��x�,t��

+
1

Rc2J�x�,t��� + ��t� − �t − R/c����x�,t��
R̂

R2� .

�21�

By using the properties of the Dirac delta function, we can
easily perform the integration over t� to obtain Eq. �12�. An
analogous calculation provides an expression for the mag-

netic field.
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III. MULTIPOLE RADIATION
VIA JEFIMENKO’S EQUATIONS

The main purpose of this section is to add to the list of
problems that can be handled directly with Jefimenko’s equa-
tions by calculating the first multipole contributions to the
radiation fields of an arbitrary localized source. We shall ob-
tain the first three contributions, namely, the electric dipole,
the magnetic dipole, and the electric quadrupole terms. Most
textbooks treat this problem by calculating first the electro-
magnetic potentials.

Although Eq. �12� for the electric field gives the correct
expression for the electric field of moving charges, it is pref-
erable for our purposes to write it in an equivalent form as
given in Refs. 7 and 8:

E�x,t� =	 dx�
���R̂
R2

+	 dx�
��J� · R̂�R̂ + ��J� � R̂� � R̂

cR2

+	 dx�
��J̇� � R̂� � R̂

c2R
. �22�

We obtain Eq. �22� starting with Jefimenko’s equation for the
electric field in Eq. �12�. Our derivation will follow the one
in Ref. 8. Note that �the Einstein convention of implicit sum-
mation over repeated indices is assumed�

�� · �J� = ��i�Ji�x�,t���t�=t−R/c +
�

�t�
�Ji�x�,t���t�=t−R/c

��−
1

c
�i�R� �23a�

=��� · J� + �J̇i�� Xi

cR
� = − ��̇� + �J̇� ·

R̂

c
, �23b�

where Xi�xi−xi� and in the last step we used the continuity

equation. From Eq. �23b� we have ��̇�=−�� · �J�+ �J̇� · R̂ /c,
which can be substituted into the second term on the right-
hand side of Eq. �12� to yield

1

c
	 ��̇�R̂

R
dx� =

1

c
	 ��� · �J��R̂

R
dx�

+
1

c2 	 ��J̇� · R̂�R̂
R

dx�. �24�

We show that the first term on the right-hand side of Eq. �24�
is proportional to 1 /R2, so that it does not contribute to the
radiation field. Observe that

−
1

c
	 ��� · �J��R̂

R
dx�

= −
êk

c
	 ��i��Ji��

Xk

R2dx� �25a�

=−
êk

c
	 �i���Ji�

Xk

R2�dx� +
êk

c
	 �Ji��i��Xk

R2�dx�
�25b�
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=0 +
êk

c
	 �Ji�
Xk

2

R3

Xi

R
−

�ki

R2�dx� �25c�

=
1

c
	 2��J� · R̂�R̂ − �J�

R2 dx� �25d�

=
1

c
	 ��J� · R̂�R̂ + ��J� � R̂� � R̂

R2 dx�, �25e�

where we have used the identity �a�b��c= �a ·c�b
− �b ·c�a, and the fact that the surface term appearing in Eq.
�25b� vanishes because the sources are localized. We substi-
tute Eq. �25� into Eq. �24� and insert the result into Eq. �12�
to obtain

E�x,t� =	 ���R̂
R2 dx�

+
1

c
	 ��J� · R̂�R̂ + ��J� � R̂� � R̂

R2 dx�

+
1

c2 	 ��J̇� · R̂�R̂
R

dx� −
1

c2 	 �J̇�
R

dx� �26a�

=	 dx�
���R̂
R2

+	 dx�
��J� · R̂�R̂ + ��J� � R̂� � R̂

cR2

+	 dx�
��J̇� � R̂� � R̂

c2R
, �26b�

which is Eq. �22�. If we consider arbitrary time-varying
sources at rest and use Eqs. �16� and �22�, the �transverse�
magnetic and electric radiation fields are given by

Brad�x,t� =
1

c
	 dx�

�J̇� � R̂

Rc
,

�27�

Erad�x,t� =	 dx�
��J̇� � R̂� � R̂

c2R
.

It can be shown17 that for time-varying sources in motion,
Eq. �27� gives the radiation fields plus additional nonradia-
tive terms of order O�1 /R2�. For instance, if a Hertz dipole is
accelerated, integration of Eq. �27� yields radiation fields
plus nonradiative terms of order O�1 /R2� which are induced
by the dipole motion �see Ref. 17 for details�.

In the radiation zone we can write R̂� x̂, 1 /R�1 /r, and
R�r− x̂ ·x�, where we defined r= �x�. If we substitute these
approximations into Eq. �27�, we obtain

B �x,t� �
1

dx�J̇�x�,t +
x̂ · x�� � x̂ , �28�
rad c2r

	 0 c

70 Am. J. Phys., Vol. 77, No. 1, January 2009
Erad�x,t� �
1

c2r
	 dx�
J̇�x�,t0 +

x̂ · x�

c
� � x̂� � x̂ ,

�29�

where t0= t−r /c is the retarded time of the origin. A com-
parison of Eqs. �28� and �37� leads to the relation

Erad�x,t� = Brad�x,t� � x̂ . �30�

Now we are ready to calculate the first multipole contri-
butions for the radiation fields. We need to calculate only one
of the radiation fields because the other is readily obtained
by Eq. �30�, which also shows that the fields in the radiation
zone are mutually orthogonal. We start by calculating the
electric dipole term and then consider the next order contri-
bution given by both the magnetic dipole and electric quad-
rupole terms.

A. The electric dipole contribution

The lowest order contribution to the radiation fields comes
from the electric dipole term. For simplicity, we calculate the
lowest order contribution to the radiation magnetic field,
which we denote by Brad

�1�,

Brad
�1��x,t� =

1

c2r

	 dx�J̇�x�,t0�� � x̂ . �31�

We write the unit vectors of the Cartesian basis as êi=��xi�,
�i=1,2 ,3�, and write any vector v as v= êivi= êi�v · êi�. The
integral in Eq. �31� can be expressed as

	 dx�J̇�x�,t0� = ei
̂	 dx�J̇�x�,t0� · ei

̂

= ei
̂	 dx�J̇�x�,t0� · ��xi� �32a�

=ei
̂	 dx��� · �xi�J̇�x�,t0��

− ei
̂	 dx�xi��� · J̇�x�,t0� , �32b�

where in the last step we integrated by parts. Because we are
considering localized sources, the first integral on the right-
hand side of Eq. �32a� vanishes �after the use of Gauss’
theorem this integral is converted to a zero surface term�.
The remaining integral may be cast into a convenient form if
we use the relation

�� · J̇�x�,t0� = −
�2��x�,t0�

�t2 , �33�

which is a direct consequence of the continuity equation. To
obtain Eq. �33� we used the relation ���x� , t0� /�t
=���x� , t0� /�t0 �see Ref. 18, note 5�. We substitute Eqs. �33�
and �32a� into Eq. �31� and obtain
�34�
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where p�t0� is the electric dipole moment of the distribution
at the retarded time t0. Now it is clear why this first term is
called the electric dipole term. The radiation electric field is
readily obtained from Eq. �30�

Erad
�1��x,t� =

�p̈�t0� � x̂� � x̂

c2r
. �35�

Equations �31� and �35� are the radiation fields of the elec-
tric dipole term, that is, the first-order contribution to the
multipole expansion. These expressions are valid for arbi-
trary but localized, sources in vacuum such as an oscillating
electric dipole.

B. Next order contribution

To calculate the next order term we need to take into ac-
count the second term of the expansion

J̇�x�,t0 +
x̂ · x�

c
� � J̇�x�,t0� +

x̂ · x�

c
J̈�x�,t0� . �36�

We substitute Eq. �36� into Eq. �28� and identify the next
order contribution to the radiation magnetic field, Brad

�2�, given
by

Brad
�2��x,t� =

1

c3r
�	 dx�J̈�x�,t0��x̂ · x��� � x̂ . �37�

For reasons that will become clear we will split the integral
in Eq. �37� into antisymmetric and symmetric contributions
under the exchange of J and x�. This rearrangement will give
rise to the magnetic dipole and electric quadrupole terms of
the multipole expansion for the radiation fields.

If we write J̈�x� , t0��x̂ ·x�� as 1
2 J̈�x� , t0��x̂ ·x��+ 1

2 J̈�x� , t0�
��x̂ ·x�� and sum and subtract 1

2 �J̈�x� , t0� · x̂�x� in the inte-
grand of the right-hand side of Eq. �37�, we obtain

Brad
�2��x,t� =

1

c2r

 1

2c
	 dx��J̈�x�,t0��x̂ · x��

− �J̈�x�,t0� · x̂�x��� � x̂

+
1

c2r

 1

2c
	 dx��J̈�x�,t0��x̂ · x��

+ �J̈�x�,t0� · x̂�x��� � x̂ . �38�

For pedagogical reasons we shall treat the magnetic dipole
and electric quadrupole cases separately.

Consider the antisymmetric term of Eq. �38�. We denote
this contribution by Brad

�2a�, use �a�b��c= �c ·a�b− �c ·b�a,
and write it in the following suggestive way:

Brad
�2a��x,t� =

1

c2r

1

2c
	 dx��J̈�x�,t0�x̂ · x�

− �J̈�x�,t0� · x̂�x�� � x̂ �39a�

=
1

c2r��� dx�
x� � J̈�x�,t0�

2c
�

m̈�t �

� x̂� � x̂ ,
0 �39b�
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where we have identified the second time derivative of the
magnetic dipole moment of the charge distribution at the
retarded time as m̈�t0�. Hence, the antisymmetric contribu-
tion for the radiation magnetic field is given by

Brad
�2a��x,t� =

�m̈�t0� � x̂� � x̂

c2r
. �40�

The appearance of the magnetic dipole moment of the distri-
bution justifies the name given to this contribution. The cor-
responding radiation electric field is readily given by

Erad
�2a��x,t� =

x̂ � m̈�t0�
c2r

. �41�

Expressions �40� and �41� are valid for an arbitrary, but lo-
calized, time-varying source at rest in vacuum such as an
oscillating magnetic dipole.

We denote the symmetric term of Eq. �38� as Brad
�2s�. We

have

Brad
�2s��x,t� =

1

c2r

1

2c
	 dx��J̈�x�,t0��x̂ · x��

+ �J̈�x�,t0� · x̂�x�� � x̂ . �42�

We manipulate the first integral on the right-hand side of Eq.
�42� in the same way as before. We have

	 dx�J̈�x�,t0��x̂ · x�� = ei
̂	 dx��x̂ · x��J̈�x�,t0� · ei

̂ �43a�

=ei
̂	 dx��x̂ · x��J̈�x�,t0� · ��xi�. �43b�

If we integrate by parts and remember that the surface term
vanishes, we obtain

	 dx�J̈�x�,t0��x̂ · x��

= − ei
̂	 dx�xi��� · ��x̂ · x��J̈�x�,t0�� �44a�

=ei
̂	 dx�xi������x̂ · x��� · J̈�x�,t0�

+ �x̂ · x���� · J̈�x�,t0�� . �44b�

We use �� · J̈�x� , t0�=−�3��x� , t0� /�t3, the relation18

���x� , t0� /�t=���x� , t0� /�t0�, and ���x̂ ·x��= x̂ to obtain

	 dx�J̈�x�,t0��x̂ · x�� = − ei
̂	 dx�x̂ · J̈�x�,t0�xi�

+ ei
̂

�3

�t3 	 dx��x̂ · x��xi���x�,t0� , �45�
which implies
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	 dx��J̈�x�,t0��x̂ · x�� + �J̈�x�,t0� · x̂�x��

=
�3

�t3 	 dx��x̂ · x��x���x�,t0� . �46�

The left-hand side of Eq. �46� is the integral in Eq. �42�. We
write the factor 1 /2 in Eq. �42� as 3 /6 and obtain

Brad
�2s��x,t� =

1

6c3r

 �3

�t3 	 dx��3x̂ · x��x���x�,t0�� � x̂

�47a�

=
1

6c3r

 �3

�t3 	 dx��3�x̂ · x��x� + r�2x̂�

���x�,t0�� � x̂ , �47b�

where in the last step we included in the integrand the term
r�2x̂��x� , t0�, where r�= �r��, which gives a vanishing contri-
bution to the result because x̂� x̂=0. Now, we define the
transformation Q such that

Q��,t� =	 dx��3�� · x��x� + r�2����x�,t� . �48�

This transformation takes a vector and an instant of time
�� , t� and transforms it into the vector Q�� , t�, given by Eq.
�48�. If we use the definition �48�, Eq. �47a� for the antisym-
metric contribution for Brad

�2� becomes

Brad
�2s��x,t� =

1

6c3r
Q� �x̂,t0� � x̂ . �49�

The corresponding symmetric contribution for the radiating
electric field is obtained from Eq. �30�:

Erad
�2s��x,t� =

1

6c3r
�Q� �x̂,t0� � x̂� � x̂ . �50�

In order to interpret the above term, let us define a linear
operator Qt, for a fixed instant t, by Qt����Q�� , t�. Note
that Qt is a linear operator so that Qt�	1�1+	2�2�
=	1Qt��1�+	2Qt��2�, for 	1, 	2�R. The linear operator Qt

is called the electric quadrupole operator. Because Qt�êi� is a
vector in R3, we can write it as a linear combination of the
basis vectors, namely

Qt�êi� = �
j=1

3

Q ji
t ê j �i = 1,2,3� . �51�

The coefficients Q ji
t are the Cartesian elements of the electric

quadrupole tensor �a second rank tensor� of the distribution
at instant t. That is why we interpret Eqs. �49� and �50� as the
electric quadrupole contribution for the radiation fields.

The electric quadrupole radiation fields given by Eqs. �49�
and �50�, together with the magnetic dipole radiation fields
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given by Eqs. �40� and �41�, are the first corrections to the
leading order term given by Eqs. �34� and �35�. In this sense,
we can write the first multipole contributions to the multipole
expansion for the radiation fields of a completely arbitrary,
but localized, time-varying source at rest in vacuum as

Brad�x,t� =
1

c2r

p̈�t0� � x̂ + �m̈�t0� � x̂� � x̂

+
1

3c
Q� �x̂,t0� � x̂ + ¯ � , �52�

Erad�x,t� = Brad�x,t� � x̂ . �53�

With these radiation fields, we can calculate the correspond-
ing Poynting vector and the power radiated by the source.
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