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We study the effect of radiation damping on the classical scattering of charged particles. By using
a perturbation method based on the Runge–Lenz vector, we calculate radiative corrections to the
Rutherford cross section and deflection function. Energy and angular momentum losses are obtained
by the same method. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

The reaction of a classical point charge to its own radia-
tion was first discussed by Lorentz and Abraham more than
one hundred years ago and is still a source of controversy
and fascination.1–4 Radiation damping considerably compli-
cates the equations of motion of charged particles, and for
many important problems, such as Rutherford scattering,
only numerical calculations of the trajectories are
available.5,6

In this paper we study the effect of radiation reaction on
the classical two-body scattering of charged particles. Fol-
lowing Landau and Lifshitz,2 we expand the electromagnetic
force in powers of c−1 �c is the speed of light� to order c−3

where radiation damping appears. We then use a perturbation
technique based on the Runge–Lenz vector7 to calculate the
radiation damping corrections to Rutherford’s deflection
function and scattering cross section. The corresponding an-
gular momentum and energy losses are also calculated. Our
results show that radiation damping effects are limited if the
colliding charges have the same sign. For opposite sign
charges radiative corrections can be very large and depend
strongly on the scattering angle.

This paper is organized as follows. In Sec. II we obtain the
radiation damping force on a system of charged particles
starting from an expansion of the electromagnetic field in
powers of c−1. The equations of motion for a two-body sys-
tem with radiation reaction are discussed in Sec. III. In Sec.
IV we use the Runge–Lenz vector to calculate the radiation
effects on classical Rutherford scattering. Some final obser-
vations are made in Sec. V.

II. THE RADIATION DAMPING FORCE

For completeness we reproduce the derivation of the ra-
diation damping force given by Landau and Lifshitz.2 We
start from the electromagnetic potentials ��r , t� and A�r , t�
created by the charge and current densities ��r , t� and J�r , t�,

��r,t� =� ��r�,tR�
R

d3r�, �1�

A�r,t� =
1

c
� J�r�,tR�

R
d3r�, �2�

where R= �r−r�� and tR= t−R /c is the retarded time. The

electric and magnetic fields, E and B, are given by
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E = − ���r,t� −
1

c

�A�r,t�
�t

, B = � � A�r,t� . �3�

We want to calculate the electromagnetic force on a charge
q,

F = qE +
q

c
v � B , �4�

as a series in powers of 1 /c. If we expand ��r� , tR� and
J�r� , tR� about tR= t, we obtain

��r�,tR� = ��r�,t� +
���r�,t�

�t
�−

R

c
� +

1

2

�2��r�,t�
�t2 �−

R

c
�2

+
1

6

�3��r�,t�
�t3 �−

R

c
�3

+ O�c−4� , �5�

J�r�,tR� = J�r�,t� +
�J�r�,t�

�t
�−

R

c
� + O�c−2� . �6�

We substitute these expansions into Eqs. �1� and �2� and use
the charge conservation relation,

�

�t
� ��r�,t�d3r� = 0, �7�

and obtain

��r,t� =� ��r�,t�
R

d3r� +
1

2c2

�2

�t2 � R��r�,t�d3r�

−
1

6c3

�3

�t3 � R2��r�,t�d3r� + O�c−4� , �8�

1

c
A�r,t� =

1

c2 � J�r�,t�
R

d3r� −
1

c3

�

�t
� J�r�,t�d3r�

+ O�c−4� . �9�

If we apply the gauge transformation

��r,t� → ��r,t� −
1

c

���r,t�
�t

, �10�

A�r,t� → A�r,t� + ���r,t� , �11�
where
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˜

��r,t� =
1

2c

�

�t
� R��r,t�d3r� −

1

6c2

�2

�t2 � R2��r,t�d3r�,

�12�

we can rewrite Eqs. �8� and �9� as

��r,t� =� ��r�,t�
R

d3r� + O�c−4� , �13�

1

c
A�r,t� =

1

c2 � J�r�,t�
R

d3r� +
1

2c2

�

�t
� r

R
��r�,t�d3r�

−
1

c3

�

�t
� J�r�,t�d3r�

−
1

3c3

�2

�t2 � r��r�,t�d3r� + O�c−4� . �14�

For a set of point charges qk with positions rk�t� and veloci-
ties vk�t� we have

��r,t� = 	
k

qk��r − rk�t�� , �15�

J�r,t� = 	
k

qkvk�t���r − rk�t�� , �16�

and the potentials become

��r,t� = 	
k

qk

Rk�t�
+ O�c−4� , �17�

1

c
A�r,t� =

1

c2	
k

qkvk�t�
Rk�t�

+
1

2c2

d

dt
	

k

Rk�t�
Rk�t�

qk

−
1

c3

d

dt
	

k

qkvk�t� −
1

3c3

d2

dt2	
k

Rk�t�qk

+ O�c−4� , �18�

with Rk�t�=r−rk�t�. We calculate the time derivatives in
Eq. �18� and obtain

1

c
A�r,t� =

1

2c2	
k

qkvk�t�

Rk�t�
+

qkRk�t� · vk�t�
Rk

3�t�
Rk�t��

−
2

3c3	
k

qkak�t� + O�c−4� , �19�

where ak�t� is the acceleration of particle k.
The potential � in Eq. �17� accounts for the Coulomb

interaction. The first term in Eq. �19�, which is order 1 /c2,
introduces magnetic and retardation effects, and can be used
to set up the Darwin Lagrangian.2 The last term in Eq. �19�,
which is order 1 /c3, gives rise to the radiation damping elec-
tric field

Erad =
2

3c3	
k

qk
dak

dt
, �20�

and a zero magnetic field �A is independent of r in this
order�.

It is interesting to see that the radiation reaction field is

uniform. If we introduce the electric dipole of the system,
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D=	kqkrk, the radiation damping field can be written as

Erad =
2

3c3

d3D

dt3 , �21�

showing that Erad represents the reaction to the electric di-
pole radiation emitted by the entire system.

The radiation damping force on charge qi becomes

Frad
�i� = qiErad =

2

3c3	
k

qiqk
dak

dt
. �22�

Note from Eq. �22� that radiation reaction is not just a self-
force—it receives contributions from every particle in the
system. Only for a single accelerating charge q does the ra-
diation damping force reduce to the Abraham–Lorentz self-
interaction

Frad =
2

3

q2

c3

da

dt
. �23�

III. TWO-BODY MOTION WITH RADIATION
DAMPING

Let us consider a system of two charged particles. We take
radiation damping into account so that their equations of
motion are

d2r1

dt2 =
q1q2

m1

r

r3 +
2

3c3

q1

m1

d

dt
�q1a1 + q2a2� , �24a�

d2r2

dt2 = −
q1q2

m2

r

r3 +
2

3c3

q2

m2

d

dt
�q1a1 + q2a2� , �24b�

where r=r1−r2 and mi is the mass of particle i. In Eq. �24�
we have discarded the c−2 terms that account for the varia-
tion of mass with velocity and the Darwin magnetic and
retardation effects. These terms do not interfere with our
treatment of radiation damping; their effect on Rutherford
scattering is discussed in Refs. 7 and 8.

If we subtract Eq. �24b� from �24a�, we find

d2r

dt2 =
q1q2

�

r

r3 +
2

3c3� q1

m1
−

q2

m2
� d

dt
�q1a1 + q2a2� , �25�

where �=m1m2 / �m1+m2� is the reduced mass. We keep only
the lowest order �c0� terms in Eqs. �24� and �25� and find that

q1a1 + q2a2 = �� q1

m1
−

q2

m2
�d2r

dt2 . �26�

The substitution of this result into Eq. �25� gives

d2r

dt2 =
q1q2

�

r

r3 +
2q̃2

3�c3

d3r

dt3 , �27�

where

q̃ = �� q1

m1
−

q2

m2
� . �28�

In the fixed target limit, m2→�, Eq. �27� becomes the
nonrelativistic Lorentz–Abraham equation of motion. Note
that two-body recoil effects appear in Eq. �27� not only
through the reduced mass �, but also via the effective charge

˜
q. In particular, if q1 /m1=q2 /m2, we have q=0, and there is
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no radiation reaction even though both particles are acceler-
ating. In this case the electric dipole vanishes �in the center
of mass frame� and there is no electric dipole radiation from
the system.

IV. RADIATIVE CORRECTIONS TO RUTHERFORD
SCATTERING

In the absence of perturbations Rutherford scattering con-
serves the total energy E=�v2 /2+q1q2 /r, the angular mo-
mentum L=�r�v, and the Runge–Lenz vector9

A = v � L + q1q2r . �29�

Here, v=dr /dt is the relative velocity and r̂=r /r is the radial
unit vector. These conserved quantities are not independent;
we can show that A ·L=0, and

A2 = 2EL2/� + �q1q2�2 = �v0L�2 + �q1q2�2, �30�

where v0 is the initial �asymptotic� velocity. If we take the
scalar product r ·A, we find the Rutherford scattering orbit

r��� =
L2/�

A cos � − q1q2
, �31�

where � is the angle between r and A. During the collision
� changes from −�0 to �0, where

�0 = cos−1�q1q2/A� = sin−1�v0L/A� = tan−1�v0L/q1q2� .

�32�

The scattering angle is 	=
−2�0, and from Eq. �32� we
obtain the Rutherford deflection function

	�L� = 2 tan−1�q1q2/v0L� . �33�

For charges of the same sign the scattering angle is positive,
and for opposite charges 	 is negative �we take L and v0 as
always positive�.

When radiation damping is considered, E, L, and A are no
longer conserved. In particular, from Eq. �27� we find that
the Runge–Lenz vector changes at the rate

dA

dt
=

2q̃2

3c3
 1

�

d3r

dt3 � L + v � �r �
d3r

dt3 �� . �34�

The total change of A during the collision is

�A =
2q̃2

3c3�
−�

�

dt
 1

�

d3r

dt3 � L + v � �r �
d3r

dt3 �� . �35�

The change of the Runge–Lenz vector is of order c−3. We
keep the same order of approximation and substitute into the
integrand of Eq. �35� the results of unperturbed Rutherford
scattering and obtain

�A =
2q̃2

3c3

q1q2

�2 �
−�

�

dt
A − q1q2r̂

r3 , �36�

which is further simplified by a change of variable from time
t to angle �. To order c−3 we have

dt =
�r2

L
d� , �37�
so that
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�A =
2q̃2

3c3

q1q2

�L
�

−�0

�0

d�
A − q1q2r̂

r
. �38�

We substitute r��� from Eq. �31� into Eq. �38� so that the
integral reduces to

�A =
2q̃2

3c3

q1q2

L3A
A�

−�0

�0

d��A cos � − q1q2�

��A − q1q2 cos �� , �39�

which is easily calculated to be

�A =
2q̃2

3c3

q1q2

L3A
A�2�A2 + �q1q2�2�sin �0

− q1q2A sin �0 cos �0 − 3q1q2A�0� . �40�

If we use Eq. �32�, �A can be written as

�A =
2q̃2

3c3

q1q2v0

L2 
2 +
1

1 + �v0L/q1q2�2

− 3
q1q2

v0L
tan−1�v0L/q1q2��A . �41�

We see that radiation damping does not modify the direction
of the Runge–Lenz vector, only its modulus. This modifica-
tion changes the asymptotic angle �0=cos−1�q1q2 /A� by

��0 =
q1q2

v0L

�A

A
. �42�

Accordingly, the scattering angle 	 changes by �see Ref. 7�

�	 = − ��0, �43�

and the deflection function is

	�L� = 2 tan−1�q1q2/v0L� + �	�L� , �44�

where the first term is the Rutherford relation and the radia-
tion damping correction is

�	�L� = −
2q̃2

3c3

�q1q2�2

L3 
2 +
1

1 + �v0L/q1q2�2

− 3
q1q2

v0L
tan−1�v0L/q1q2�� . �45�

From Eqs. �44� and �45� we can calculate L�	�. To order c−3

the result is

L�	� =
q1q2

v0
cot�	/2�
1 +

q̃2

q1q2
�v0

c
�3

��	�� , �46�

where

��	� =
1

6

sin3�	/2�
cos5�	/2�

��5 − cos 	�cot�	/2� − 3�
 − 	�� . �47�

A plot of ��	� is shown in Fig. 1. We see that the radiative
correction is limited if the Coulomb force is repulsive, and is
strongly divergent for backscattering �	→−
� in an attrac-
tive Coulomb field.

The scattering cross section is calculated from the deflec-

tion function as
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d�

d
=

1

p2� L

sin 	

dL

d	
� , �48�

where p=�v0 is the initial momentum. With Eqs. �46� and
�47� we find

d�

d
=

d�R

d

1 +

q̃2

q1q2
�v0

c
�3

��	�� , �49�

where

d�R

d
= � q1q2

2�v0
2�2 1

sin4�	/2�
�50�

is the nonrelativistic Rutherford cross section, and

��	� =
1

2

sin3�	/2�
cos5�	/2�

��
 − 	��2 − cos 	� − 3 sin 	� . �51�

The function ��	� is shown in Fig. 2. At large angles, close to
backscattering, ��	� has the limiting behavior

��	� 
4

15
−

2

35
�	 − 
�2 + ¯ �	 → 
� , �52a�

-1 -0.5 0 0.5 1

� � �

0

0.25

0.5

0.75

1

�

Fig. 1. Angular dependence of the radiative correction to Rutherford’s de-
flection function. Positive �negative� angles correspond to the scattering of
like �unlike� charges.

-1 -0.5 0 0.5 1

� � �

-1

-0.5

0

0.5

1

�

Fig. 2. Angular dependence of the radiative correction to the Rutherford

cross section. The positive/negative angles are the same as in Fig. 1.
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��	�  − 96
�	 + 
�−5 + ¯ �	 → − 
� . �52b�

The angular momentum loss �or gain� can be calculated
with similar methods. With radiation damping, the time de-
rivative of L is given by

dL

dt
=

2q̃2

3c3 r �
d3r

dt3 , �53�

which, integrated over the unperturbed Rutherford trajectory,
gives the total change of angular momentum in the scattering
process,

�L =
4q̃2

3c3

q1q2v0

L2 
1 −
q1q2

v0L
arctan� v0L

q1q2
��L . �54�

At a given scattering angle the angular momentum change is

�L =
4

3

q̃2

q1q2
�v0

c
�3

��	�L , �55�

where

��	� = tan2�	/2�
1 −

 − 	

2
tan�	/2�� . �56�

This function is shown in Fig. 3.
The energy loss is readily calculated by differentiating Eq.

�30�,

�E

E
=

2

�v0L�2A · �A −
2

L2L · �L . �57�

If we substitute the expressions for �A and �L in Eqs. �41�
and �54�, we obtain

�E

E
=

4q̃2

3c3

�q1q2�2

L3

��3
q1q2

v0L
− 
1 + 3�q1q2

v0L
�2�arctan� v0L

q1q2
�� , �58�

or, in terms of the scattering angle,

�E

E
= −

4

3

q̃2

q1q2
�v0

c
�3

��	� , �59�

-1 -0.5 0 0.5 1

� � �

0

0.25

0.5

0.75

1

�

Fig. 3. Angular dependence of the change in angular momentum. Positive/
negative angles are the same as in Fig. 1.
where ��	� is given in Eq. �51� and shown in Fig. 2.
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V. COMMENTS

Our discussion of radiation damping corrections to Ruth-
erford scattering ignored relativistic effects such as retarda-
tion, magnetic forces, and the mass-velocity dependence.
These effects give contributions of order c−2 to the deflection
function and cross section �see Ref. 7�, and are generally
more important than the c−3 radiative corrections. They were
not considered here because a c−2 correction to the nonrela-
tivistic Rutherford trajectory adds only c−5 terms to our per-
turbative calculation of radiation damping. We can easily
write the complete �up to c−3� expansion of the deflection
function and scattering cross section by combining the re-
sults of Ref. 7 and the present paper. For example, the dif-
ferential cross section to order c−3 is

d�

d
=

d�R

d

1 − �v0

c
�2

h�	��
1 + 5
�

M
�v0

c
�2�

�
1 +
q̃2

q1q2
�v0

c
�3

��	�� , �60�

where

h�	� = 1
2 tan2�	/2��1 + �
 − 	�cot 	� + 1, �61�

and M =m1+m2. As discussed in Ref. 7, the first correction
term accounts for the variation of mass with velocity, and the
second term includes magnetic and retardation effects. The
last term is the radiative correction calculated in Sec. IV.
Note that magnetic and retardation effects simply renormal-

-1 -0.5 0 0.5 1

� � �
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d
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d
�
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)

Fig. 4. Rutherford scattering to order c−3. The projectile velocity is 0.4c, and
the target has infinite mass. The two electric charges are of the same mag-
nitude, like �unlike� signs corresponding to positive �negative� scattering
angles. The nonrelativistic Rutherford cross section is given by the dotted
lines. The dashed lines incorporate c−2 corrections, and the solid lines in-
clude the c−3 radiation damping effects.
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ize the cross section by an angle independent factor.
In Fig. 4 we show the differential cross section for the

scattering of a charged particle with v0=0.4c on a fixed tar-
get of equal �	�0� or opposite �	�0� charge. The dotted
lines give the nonrelativistic cross section, and the dashed
ones show the effect of the c−2 relativistic mass correction
�retardation and magnetic forces do not show up on a fixed
target�. The solid lines include the radiation damping effect
as given in Eq. �60�. We see in Fig. 4 that radiation damping
has a very small effect when the charges repel each other.
But for an attractive Coulomb force the radiative correction
is important �as also seen in Fig. 2�, creating a plateau-like
structure in the angular distribution. Even though our pertur-
bative results are not reliable for large corrections, such
structure is very similar to what is found in exact numerical
calculations.6

A final point that deserves comment is why our results are
not plagued by runaway solutions. The reason is that the
Runge–Lenz-based perturbative calculation presented here
follows a “reduction of order” approach such as described in
Refs. 2 and 10 �see also Ref. 11 for a closely related discus-
sion�. This procedure effectively eliminates the additional
degrees of freedom introduced in the equations of motion by
the time derivative of acceleration, yielding only physically
acceptable solutions.

a�Present address: Departamento de Física e Química, Universidade Federal
de Itajubá, Brazil.
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