Three methods for calculating the Feynman propagator
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We present three methods for calculating the Feynman propagator for the nonrelativistic harmonic
oscillator. The first method was employed by Schwinger a half a century ago, but has rarely been
used in nonrelativistic problems since. Also discussed is an algebraic method and a path integral
method so that the reader can compare the advantages and disadvantages of each mettuzd. ©
American Association of Physics Teachers.
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[. INTRODUCTION suited to nonrelativistic problems, although it has rarely been
used in the calculation of nonrelativistic Feynman propaga-
The purpose of this paper is to discuss three methods faors. Recently, this subject has been discussed in an elegant
calculating the Feynman propagator. The methods are agvay by using the quantum action princiﬁl%Before this
plied to the harmonic oscillator so that they can be comparedme, onLy a few papers had used Schwinger’s method in this
by the reader. The harmonic oscillator was chosen because ebntext'®>~1"We adopt here a simpler approach that we think
its intrinsic interest and because it is the simplest nontrivials better suited for students and teachers.
system after the free particlsee, for instance, Refs. 1 and  First, observe that for>0, Eq.(1) leads to the differential
2). The first method we will discuss was developed byequation for the Feynman propagator:
Schwinget to treat effective actions in quantum electrody- .
namics and is based on the solution of the Heisenberg opera- ., 7 N N ,
tor equations of motion. The use of proper operator ordering 'ﬁa_TK(X X m)=(X |Hex;{ T h HT) X'). )
and the subsidiary and initial conditions yields the propaga- _ ) )
tor. The second method is based on algebraic techniquddy using the general relation between operators in the
based on factorizing the time evolution operator using theleisenberg and Schinger pictures,
Baker—Campbell-Hausdorff formul4s By using factoriza- A AURA —ifith
tion, the completeness relations, and the value of the matrix On(t)=e"""0se ' ®)
e|e”r‘]egt <X|F?>, we ﬁan determine ghe prO]!oag6ator.d Thig it is not difficult to show that if|x) is an eigenvector of the
method is close to the one presented in Refs. 6 and 7, & i A .
here we will use the Baker—Campbell-Hausdorff formulaslbtperatorx with eigenvalue, then itis also true that
in a slightly different way. The third method is a path integral =~ %) %, t)=x|x,t), (6)
calculation that is based on a recurrence relation for the prod-
uct of infinitesimal propagators. As far as we know, this re-where
currence relation has not appeared in previous discussions of . UES ——ifUh
the one-dimensional harmonic oscillator path integral, al- X()=e"""Xe ' @)
though it is inspired by a similar relation in the three- and|x,t) is defined as
dimensional systerf. : ]
To establish our notation, we write the Feynman propaga- |x,t)=eH"%|x), (8)
tor for a time independent nonrelativistic system with Hamil-

tonian operatof! in the form: Using this notation, the Feynman propagator can be written

as:
K(x",x";7) = 6(r)(x"[0(7)|x"), @ K(x" x';7)=(x",7/x",0), 9
whereU(7) is the time evolution operator: where
U(r)=exp(—iH/#), 2 X(7)|X", 7y =x"|x", 7), (102
and 6(r) is the step function defined by -
X(0)|x",00=x"|x",0). (10b)
1 ifr=0 . . .
0(r)= ) (3) The differential equation for the Feynman propagator, Eq.
0 if r<0. (4), takes the form
, d -
[I. SCHWINGER'S METHOD ih&—T<x”,r|x’,0>=(x”,T|H|x’,O) (7>0). (11)

This method was introduced in 1951 by Schwinger in the ) ) ) )
context of relativistic quantum field thedrand it has since ~ The form of Eq.(11) is very suggestive and is the starting

been employed mainly in relativistic problems, such as thepoint for the very elegant operator method introduced by
calculation of boson&and fermionic®—3 Green’s functions  Schwinger The main idea is to calculate the matrix element

in external fields. However, this powerful method is also wellon the right-hand side of Eq11) by writing H in terms of
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the operators X(7) and X(0), appropriately ordered. PA(7r) 1

Schwinger’s method can be summarized by the following H= WJF Emwzkz(ﬂ, (18
steps:

(1) Solve the Heisenberg equations for the operakqrs) or
andP(7), which are given by: o\ p2(0) . 1 e .

d. SN d. . A
iﬁ&X(t)=[X(t),H], ih&P(t)=[P(t),H]. (12
because the Hamiltonian operator is time independent, de-
Equations(12) follow directly from Eq.(5). spite the fact that the operatdp§ ) andX(7) are explicitly
(2) Use the solutions obtained in stép) to rewrite the  time dependent. It is matter of choice whether to work with
Hamiltonian operatoH as a function of the operato’(0)  the Hamiltonian operator given by E(L8) or by Eq.(19).

$ . ; o For simplicity, we choose the latter.
andX(7) ordered in such a way that in each termkbf the As stated in stefgl), we start by writing down the corre-

operatorX(7) must appear on the left-hand side, while the sponding Heisenberg equations:
operatorX(0) must appear on the right-hand side. This or-
dering can be done easily with the help of the commutator
[X(0),X(7)] (see Eq.(25). We shall refer to the Hamil-
tonian operator written in this way as the ordered Hamil-
tonian operator ,((X(7),X(0)). After this ordering, the ils(t)z—mwzf((t) (20b)
matrix element on the right-hand side of Ed.1) can be dt ’

readily evaluated:

d. P
&X(t)—?, (203

whose solutions permit us to write foe 7 that
(X", 7[H[X",0)= (X", | Hord X(7),X(0))|x",0) B(0)
=H(x",x"; 7)(x",7|x",0), (13 5((7)=5((O)c05wr+m sin wr. (21)

where we have defined the functiad. The latter is a
c-number and not an operator. If we substitute this result i i ~
Eq. (11) and integrate over, we obtain: pression forP(7):

P(7)=—mwX(0)sin wr+ P(0)cos wr. (22)

rfor later convenience, we also write the corresponding ex-

i (r
(x”,7-|x’,0}=C(x”,x’)ex;{ - %f H(x”,x’;r’)dr’) ,
(14) To complete stef2) we need to rewrit®(0) in terms of

_ _ _ _ X(7) andX(0), which can be done directly from E¢1):
whereC(x”,x") is an arbitrary integration constant.
(3) The last step is devoted to the calculatiorCgik”,x"). . Mo .
Its dependence ox’ andx’ can be determined by imposing
the following conditions:

(7)—X(0)coswT]. (23)

If we substitute this result into E¢19), we obtain

(X", 7|P(7) |x',o>:—iﬁi<x",r|x',o>, (153 X me? . .
X" H=————[X2(7)+X?(0)cof(wT)
2sirf(wr)
(x”,r||5(0)|x’,0)=+iﬁ%<x”,r|x’,0>. (15b) —X(0)X(7)cog wr)—X(7)X(0)cog wT)]
X

. o + imw?X?(0). 24
These equations come from the definitions in ELp) to- 2Mw"XA(0) 249
gether with the assumption that the usual commutation relayote that the third term in Eq(24) is not written in the

tions hold at any time: appropriate order. By using the commutation relation

[X(7),P(n)]=[X(0),P(0)]=i%. (16) . o P(0)
i o o [X(0),X(7)]=]| X(0),X(0)cof w7)+ ——siN(wT)

After using Eq.(15), there is still a multiplicative factor to be Mo
determined inC(x”,x"). This can be done simply by impos-

ing the propagator initial condition: = rln_ sinwT), (25
w
lim (X", 7|x",0y= (X" —x"). 1 . ) .
Ho+< d )= ) (7 it follows immediately that

Now we are ready to apply this method to a large class of
interesting problems. In particular, we shall calculate the
Feynman propagator for the harmonic oscillator.

The Hamiltonian operator for the harmonic oscillator canlf we substitute Eq(26) into Eq.(24), we obtain the ordered
be written as Hamiltonian:

X(0)X(7)=X(7)X(0)+ r;—i) sin w. (26)
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—m—wz[kz( )+ X2(0) — 2X(7)X(0)cod w7)] lim (x",7|x’,0)= lim Lexp[ﬂ(x"—x')2
T 2sif(wn) ! T e T T Jar 2T

if 27t
— Tw cotl 7). (27) =C ZrT]W—L)é(X”—X'). (33

Once the Hamiltonian operator is appropriately ordered|f we compare this result with the initial condition, EQ.7),
we can find the functiomd(x",x";7) directly from its defi-  we obtainC= \mw/27i%. By substituting this result fo€
nition, given by Eq.(13): into Eq.(30), we obtain the desired Feynman propagator for
N the harmonic oscillator:
(X", 7|H|x",0)

HX" X' 7)= ——— K(x",x";7)=(x",7x",0
( <XH,7_|X!,0> ( T) < 7-| >

Mw? =\/z— m¢'u exp{ irru»
= T[(x”2+x’2)cs@(w7-) 27ih sin(wT) 2% sin(w7)

><[(x"2+x'2)cos(m)—2x"x']]. (34)

H ord

ihw
—2X"x'cotlwr)csdwT) ] — - cot(wT).

In Sec. V we shall see how to extract from E®4) the

(28) eigenfunctions and energy eigenvalues for the harmonic os-
By using Eq.(14), we can express the propagator in thecillator and also how to obtain, starting from the Feynman
following form: propagator, the corresponding partition function.
) For other applications of this method we suggest the fol-

Ma ((X"2+x'2) lowing problems for the interested reader. Calculate the
Feynman propagator using Schwinger’s method (foprthe

i [~
(X", 7|x",0)=C(x",x") exp{ —7 dr’
constant force problentji) a charged spinless particle in a

xcs¢ w7’ —2x"x' colwr)csanT') uniform magnetic field; andiii) a charged spinless particle
i%w in a harmonic oscillator potential placed in a uniform mag-
— ——cotwr7’ ] . (29)  netic field.
2 We finish this section by mentioning that Schwinger’s

The integration over’ in Eq. (29) can be readily evaluated: Method can be applied to time-dependent Hamiltonians as
well.>~" It also provides a natural way of establishing the

o C(x",x") imo midpoint rule in the path integral fosrgalisr(rsee Sec. 1Y
(X", 7|x",0y= nan exp o e when electromagnetic fields are present.

0 s 1. ALGEBRAIC METHOD
X[(X"“+x"?)codwT)—2X"X"]{, (30
The origin of the algebraic method dates back to the be-
where C(x”,x’) is an arbitrary integration constant to be 9inning of quantum mechanics, with the matrix formulation
determined according to stép). of Jordan, Heisenberg, and Pauli among others. Here, we
The determination oC(x",x') is done with the aid of present an algebralc methqd for_calculatlng Feynman propa-
Egs.(15) and (17). However, we need to rewrite the opera- gators which involves manipulations of momentum and po-

A U - - sition operatoré:'®-?'This is a powerful method because it
torsP(0) andP(7) in terms of the operato¥(7) andX(0), s connected with the dynamical symmetry groups of the

appropriately ordered. FdP(0) this task has already been system at hand. A knowledge of the underlying Lie algebra
done(see Eq.(23), and forP(r) we find after substituting Can be used to calculate eigenvalues without explicit knowl-

Eq. (23) into Eq. (22): edge of the eigenfunctiors®°It can also be used to cal-
culate propagators for a wide range of probléfis.2° A
P(7)=mo cotl w)[X(7)—X(0)coswT] coherent-state version of the algebraic method for different
R problems has been discussed af%. Because the use of
—mwX(0)sin(wT). (31 these mathematical tools can be a bit cumbersome at first

. . . o reading, we prefer to explore a simpler version of this
Then, by inserting Eqg31) and(30) into Eq.(158 it is not method, which is close to that in Ref. 6. For this purpose, the

difficult to show that: calculation of the propagator for the one-dimensional har-
IC(X",X") monic oscillator is excellent.

=0. (32 The Hamiltonian operatoFI for a nonrelativistic system
can usually be written as a sum of terms involving the op-
Analogously, by substituting Eqg23) and (30) into Eq.  eratorsP and X which do not commute. Hence, the factor-
(15b) we have thabC(x",x")/dx’ =0. The last two relations jzation of the time evolution operatdy(r)=exp(~iH/h)
tell us thatC(x",x") =C, that s, itis a constant independent jnto a product of simpler exponential operators involves
of X" andx’. In order to determine the value @f we first  some algebra. This algebra deals basically with the commu-
take the limitr— 0™ on(x”,7|x’,0). If we use Eq(30), we tation relations among these noncommuting operators, and
find that uses formulas generically known as Baker—Campbell—

&X”
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Hausdorff (see Eq.(35)). The use of those formulas is the  Before we apply the algebraic method to a specific prob-

essence of the algebraic method, because it is easier to cém, we derive Eq(41). We first note that

culate the action of these simpler exponential operators on o . o

the stategx) or |p), than to calculate the action on these  eXp(—iyPX/%)P|p)=pexp(—iyPX/%)|p). (42)

same states of the original time evolution operator. The alg

braic method can be summarized by the following steps:
(1) First rewrite the evolution operattf(7) as a product [exp(—iyPX/%)P exp(i yPX/h)]exp —iyPX/%)|p)

of exponentials of the operatoXs P, andPX. (Note that, in

contrast with Schwinger’s method, here the operafbland

X are time independent, that is, they are in the Sdimger
representation.The factorization can be done with the help
of the Baker—Campbell-Hausdorff formfifa

e’Be A=C, (35)

1 1 N N
whereA, B, andC are operatorsgfor simplicity we omit the B ESR AR T 2+ o7 3V ... |P=€P. (44)
caret on the operatorand

eEquation(42) can be rewritten as

=p exp(—iyPX/%)|p), (43

so that we can use the Baker—Campbell-Hausdorff formulas
(35) to rewrite the term in the square brackets as:

exp(—iyPX/%)P exp(i yPX/#)

1 1 If we substitute the above result into E¢4.3), we have
C=B+[A,B]+ E[A,[A,B]]"— a[A,[A,[A,B]]]Jr e
(36)
valid for any A and B. Equation(35) can be iterated as:
C?=(e”Be #)(e”"Be #)=e"B%e A,

Plexp(—iyPX/%)|p)]=e "plexp —iyPX/%)[p)], (45

which shows that expfiyPX/4)|p) is an eigenstate of the

operatorP with eigenvaluepe™”. This eigenstate can be
written as|e” ¥p), up to a constan€,,, so that

exp(—iyPX/#)|p)=C,|e ?p). (46)
C'=e”B"e A (37 _
To determine the consta@,, we note that
If we expand expC) and identify each poweE" in Eq. (37),
we find
. (p’ Iexr{ ?’XP)GXF(_WPXHLHF)) IC,|%(e""p"|e”"p).

eC=efeBe A, (39

, , _ (47)
which can be inverted to give .

eB— o~ AcCeh (39 If we use the relatiofXP,PX]=0, and Eq.39), we have

We then identifyB= —irH/# and find a factorized form of (p'[expliv[X,P1/)|p)=|C,|5(e""(p'—p)), (49
the evolution operator for a conveniently chosen operAtor gg that

The specific choice foA depends on the explicit form of the

Hamiltonian. This factorization can be repeated as many € ?&(p—p’)=|C,|?e”a(p’—p). (49)
times as needed. Note that, in general, the opefatorEg.
(36), which is an infinite series witB and multiple commu-
tators of A and B, is more complicated than the operai®r

Equation (49) determinesC,=e"? and finally yields Eqg.
(42).

(50

alone, which is proportional to the Hamiltonian. However, if _NOW we are ready to apply the algebraic method to solve
we choose the operatérconveniently, this series can termi- SOMe guantum mechanical problems. For the harmonic oscil-
nate and the remaining terms from the commutators can caftr the time evolution operatdg) becomes
cel some of those terms originally presentBnA more sys- p2 1
tematic way of doing this factorization is to use the Lie O(r) F{_”' —+—mw25(2) / sl
algebra related to the problem under study. This way will be 2m 2
sketched at the end of this section. )
(2) Next substitute the factorized Hamiltonian into the We follow step(1), chooseA= aX? wherea is an arbitrary
definition of the Feynman propagatsi(x”,x’;7), Eq. (1),  parameter an@®= —irH/%, and obtain from Eqs(36) and
and calculate the action of the exponential of the operator&38)
X, P, and PX on the statelx). For the operatoiX this
calculation is trivial and foP we just need to use the closure

explaX?)exp —iTH/%)exp(— aX?)

relation 1= fdp|p)(p| and the matrix element(x|p) —ir|P? iha .. ..
= (1/27h)Y%exp(xp). For the mixed operatoPX we need 7 l2m T m (XP+PX)
to use
A mi 2at\? &2
(p'|lexp(—iyPX/fh)|p)=e"78(p'—e" 7p), (40) ol =l 1KY (51)

where vy is an arbitrary parameter to be chosen later. Equas

tion (40) comes from the relation Note that even though the Baker—Campbell-Hausdorff for-

mulas have an infinite number of terms, the number of non-
exp(—iyPX/%)|p)=e" e 7p). (41)  vanishing commutators betweéhand X2 is finite.
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The general idea of the algebraic method is that we want If we use Eq.(40) with y=iwr, and the definitiong52)
to factorize the time evolution operator. In this case, a step imnd (55), we have
this direction corresponds to canceling the term wthon 1 m
the right-hand side of Eq51). This is easily achieved with k(" x': )= ——exp — ——| (x"2—x'?)
the choice 27h h

Mw —iwTyn "2 ;
a=—=. 52 (& X=X ot
2h ( ) +2 1_872””- 2
Then by using the commutation relatigiX,P]=i%, we 1 g-2lor
N ) - Amwh
exp(—i7H/%) =e'"2exp — aX?)
i 2
. R - (e Ia)TXH_XI)
[ p2 S ~ Xl p—2 _— 59
Xex;{—%r ﬁﬁ-inX) explaX?). paime 1—g 27 59

(53) This integral has a Gaussian form and can be easily done

giving the harmonic oscillator propagator:
We can repeat stefl) to reduce the above operator con-

taining P2 between brackets into a product of simpler terms.k (x” x';7)= A /.m—w.
This time we need to use productsif instead ofX2. If we 2mit% sinwT

use Eqgs(35) and(36), we obtain

X ex im—w((x”2+x’2)cos(ur— 2x"x")
2h sinoT

~ 2 1
P i P _ pp2
exp(BP9) 2m+|wPX)exp( BP9) (60)
1 i o where we used that (e~ 2“7) =2je”'“"sin wr and Euler’s
= ﬁ+2wﬁﬁ) P2+iwPX (54)  formula, €'“"=coswr+i sin wr. This result naturally agrees
with the one obtained in Sec. Ill using Schwinger’s method.
hand side we take algebraic method can be discussed on more formal grounds,
identifying the underlying Lie algebra, and using it to explic-
B 1 55 itly solve the problem of interest. For the one-dimensional
B=- Amaot’ (59 harmonic oscillator we can find a set of operators
which gives from Eqs(39) and (54) Lo=—3d Li=2" Ly=Xdts, (61)
i (P2 such that the Hamiltonian operator can be written Fas
ex T ﬁﬂwPX =(A/m)L_+mw?L,. The above operators satisfy the
SQO(3) Lie algebra
. [ . n .
=exq—BP2)exp{—g(iwr)PX exp( BP?). (56) [L+.L-1=2L5, [LsL:]=%*L.. (62)
_ _ This algebra is isomorphic to the usual @ULie algebra of
If we substitute Eq(56) into Eq. (53), we have that the angular momenta and can be used to construct specific
i Baker—Campbell-ausdorff formuld$?! so that given the
ex;{ S Tﬂ) =el 72 exp(— af(z)expn( — B|52) algebra, the solution arises naturéllbf.one considers three-
h dimensional problems, which are more involved because of

) . the presence of terms proportional ta?/this algebra can
exp( BP?)exp(aX?). still be used to find the propagator, but the operators have to
be generalized®!° These generalized operators can be used
(57)  to solve a wide range of problerd%.2

xexr{— %(in)f:)”(

Equation(57) is the expression for the time evolution opera-
tor written as a product of simpler operators obtained bylv. PATH INTEGRAL METHOD
applying step(1) of the algebraic method.

We next follow step(2), insert Eq.(57) into the definiion ~ The path integral formalism was introduced by Feynffian
of the Feynman propagator E€), and find in 1948, following earlier ideas developed by Difddn the
) ) last few decades, path integral methods have become very
K(X" X" 7)=exq — a(X"2—x'2)+ loT dpdp popular, mainly in the context of quantum mechanics, statis-
o 2 2mh tical physics, and quantum field theory. Since the pioneering
, textbook of Feynman and HibB8,many others haé%é b§4en
i ) ; . X 21
RPN NN 22 written on this subject, not only in quantum mechariics,
xex;{ﬁ(p X'=px) =P )} but also in condensed matteras well as quantum field

: theory>®~*to mention just a few.
/ L 8¢ In this section we shall apply Feynman’s method to again
(P |exp{ ﬁ(le)thm' 8 obtain the harmonic oscillator quantum propagator already
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established in Secs. Il and Ill. The purpose here is to evalu- If we use the Lagrangian for the harmonic oscillator,
ate the corresponding path integral explicitly, without mak-namely,

ing use of the semiclassical approach which is often used in = Iy Imade

the literature. Of course this kind of direct calculation al-  L(X.%)=3m¥*— imw’x (69
ready exists in the literature, see for example Refs. 1, 38, a

39. However, we shall present an alternative and very S|mplg1e infinitesimal propagator, given by E(68), takes the

procedure.
The pat_h integral expression for the quantum propagator is Mo 1 ime 1 szjz
formally given by K(Xj . Xj-1;7))= Cyy Eex > or 1— 5
j j
K(Xn,X0;7) = |x(0)=x,[ DX]€'SCV/A, (63)
X(9=xn X (XX g) [ = 2% -1 (70

whereS(x) is the action functional:

tn] 1
S(X)Ej > .
to sin ¢;=w7j, (71)

and[ Dx] is the functional measure. According to Feynman’s,, hich implies thate;=wr; and cos¢jzl—w27-2/2. In fact,

prescription, we have that: other variable transformations could be tried, but this is the
K(Xn X0 7) simplest one that we were able to find that allows an easy
’ iteration through a convolution-like formula. It is also help-

m N~1 m ful to introduce a functiorf:
Nﬁg mne ) j=1 mlhe i \F\/\ Mo
, (.75 b)= 2mif ¥ sin 2h S|n¢

M(X— Xg—1)? B
2¢e

To calculate this infinitesimal propagator we now define
new variablesp; such that:

my2(t) — V(x(t)) |dt, (64)

Xk+xk 1)H
2 ’ X (cosp(n*+n'2)—2n7n")|.
(65)

whereNe = 7. With this prescription, the scenario is the fol-
lowing: summation over all the functions means to sum
over all the polynomials in the pland,k(t)), starting at N—1
(Xo,to) and finishing at Xy,ty), which gives rise to the K(Xn,Xg;7)= lim fH F(Xj.Xj—1:9)) H ax.
integrations over the variableg=x(t;) from —c to , N—e

wheret;j=ty+je, with j=1,2,... ,N—1. Hence, to evaluate

a path mtegral means to calculate an infinite number of or- The functionF has an interesting property:
dinary integrals, which requires some kind of recurrence re-

lation. *

When electromagnetic potentials are absent as is the case fﬁx F(n",m ") F(n,n';¢")dn=F(7",7";¢"+ ).
here, it is not necessary to adopt the midpoint rule for the (74)
potential V(x) as given by Eq(65), and other choices can
also be made. Instead of using the midpoint rule we shallhis can be seen by a simple direct calculation. From its

(72

Then, using Eqgs(70)—(72), we can rewrite the harmonic
oscillator propagato(67) as:

(73

write the discretized version of the action as definition (72), we have that
N m(x;—X; _1)2 *
S= JZ—TH—TIZ(V(X)-FV(X] 1)),  (66) f F(7" m¢")F(n,n' ;¢ )dn
=1 j —
where for generahty we have takepas thejth time interval Mw 1 imw [ cos ¢”
thatr==N ;7. Th ite the F t =5 ex "2
so thatr=ZX_, 7. Then, we write the Feynman propagator 2t N sin ¢"sin ¢’ 25 | sin ¢
in the form:
N - cos¢ J g F{ ( 2 B)}
. ex a
K(Xy,X0i7)= Ilmfjl_[1 K xi-aim) [T dx, (67) Tang " 7 72
N— o = =
(75)
where the propagator for an infinitesimal time interval is i
given by where we have defined
[ m i [m(x;—x;_1)? sin(¢”+ ¢’ "sin ¢’ + n'sin ¢”
K(Xj . Xj-1;7))= : eXp{_ M QZM, =7 .¢ 7] ¢ : (76)
277'7”1 h sin ¢"sin ¢’ sin ¢"sin ¢’
_ By completing the square in the integrand of E¢p) and
7i 2(V(X ) V(- 1))H (68) calculating the Fresnel integral, we obtain
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f:F(n", 7 ¢")F(n,n' ¢")dy

B 2@t | 1
2mih Mw o sin ¢”Sin ¢’
cos @” cos ¢’

X ex - -
sin ¢” sin ¢’

If we use the definitions in Eq76), as well as some trivial
manipulations with trigonometric functions, it is straightfor-
ward to show that

Mw

imw

"2
2% *

(77

/2_’8_2) .

(¢4

fiF(ﬂ", 7 ¢")F(n,7n' ¢")dn

[ M 1 imo 1
~ V2w Nsin(gr+g) 1 2 sin(g'+4)

: (78)

X (cog¢"+ ") (n"*+n 2)=27"n)

which is precisely Eq.(74). We now definex"=xy, X'
=Xp, Use the fact that IimﬂwEJ’Ll(ﬁj = w7 and the result in
Eq. (73) to finally obtain the desired propagator:

K(xX" x";71)=F(X".X";07)

Mw
V27t sinot
o

imo "2 12 "yt
m(COSwT(X +x'9)=2x"x")|.

(79

We further defineé¢’={mw/fix’ and £"={mw/fix”, and
express the harmonic oscillator propagator to the form:

MwZz
K(X",X,;T)z — (1_22)71/2

X 1 2 1En 72+ "2 1+22
exp T 26 €'z (€34 6)| -
(82
— mwz(1_22)71/2 ex _}(§12+§1/2)
ah 2
2817 72+ "2 Z2
Xexp[ £z (¢ : £?) 1 .
1-z
where we used the identity
1+72 _1Jr z2 64
21-2%) 2 1-72
Now we consider Mehler’s formul&:
2xy 7— (X2 +y?) Z2
(1-2)" Y2 ex yz— OCty’)
1-72
=2 HaOOHy(y) ——  ([2I<1). (85)
n=0 2"n!

However, some care must be taken in order to us€&).in

Eq. (83), becausez|=1 and Mehler’s formuld85) requires
that|z|<1. This problem can be circumvented if we add an
imaginary part tow, namely, if we leto—w—ie, and take
£—0 after the calculations. Hence, if we use E85), Eq.

This result coincides with the expressions obtained in thé83) takes the form:
previous sections for the harmonic oscillator. Let us now . .
review some of the applications of the Feynman propagatorl.qx X'57)

V. EIGENFUNCTIONS, EIGENVALUES AND THE
PARTITION FUNCTION

In this section we will show how to obtain the stationary

Ma _ Ma //2+ 12
\/ s ex 57 (x x')
* Mo Mo e*iwr(nJrl/Z)
<3, ol e ol T [

states and the corresponding energy levels, as well as the

partition function of the quantum harmonic oscillator, di-
rectly from the expression of the Feynman propagator calcu-

lated earlier. Although these tasks are well known in th
literature (see, for instance, Refs. 38 and)4Qve shall
present them here for completeness.

e

(86)

where we have and y=¢'

let x=¢&"= Vmaw/hix"
=Vmw/fx'.

If we compare Eq(86) with the spectral representation

To Obtain the energy eigenstates and eigenva'ueS, we neé%o), we f|na."y Obtain the We” knOWn I’esul'[S fOI’ the energy
to recast the propagat¢r9) in a form that permits a direct €igenfunctiongapart from a phase factoand energy levels,
comparison with the spectral representation for the Feynmaffspectively:

mo , H Mo
wh )l N X

propagator given by 1 me| Y4
: ¢n(><)=—(—) em{
K(x,x';7)=0(7) > ¢n(x)$%(x")e a7 (7>0). (80) V2mi | mh

87)
If we define the variable=e™'“", we can write E,=(n+ Yo (89)
2
sin(wr) = i 1-z (819 We finish this section by calculating the partition function
2i z for the harmonic oscillator. With this purpose in mind, recall
1422 that the partition function in general can be written as:
= . 1 .
coswn =7, (81 Z(B)=Tre A", (89)
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The trace operation can be taken over a discrete basis, tiation of the Feynman propagator will help readers compare
eigenfunctions of the Hamiltonian itself, or, more conve-the advantages and difficulties of each of them.
niently here, over the continuous set of eigenstates of the

position operatofdenoted by{x)):

+ oo

Z(,B)zf ) dx (x| e AH X). (90)

—o0
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with the end pointx’ =x"=x andB8=i%t as the imaginary
time interval, we have

+

Z(,8)=f ) dx K(x,x; =1 B). (91

Then, from the harmonic oscillator propagattf9), we
readily obtain

K(x,X;—1h )
B | mw
N 27 sinh(wBh)

Mw 2
XexX —W(COSKwBﬁ)—l)X , (92)

where we have used siA{a)=—isinha and cosi)
=cosha. By substituting Eq(92) into Eq. (91), and evalu-
ating the remaining Gaussian integral, we finally obtain

B mMw
ZIB)= N Zansiniwph)
- 2
XJ ex%_ m(;;X tan"( wfh)

1
- 2siniwph)’

where we used the identities cosh1=2 sintf(a/2) and
sinh(a)=2 sinH a/2)cosia/2). Equation(93) is the partition
function for the one-dimensional harmonic oscillator.

dx

(93

VI. CONCLUSIONS
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THE “RAD” LAB

Everyone agreed that the new lab needed to have some sort of title, but a descriptive yet
nonrevealing name was hard to find. Finally, one of the Berkeley group suggested calling|it the
MIT Radiation Laboratory in honor of Lawrence, who was largely responsible for their all being
there. The misleading name would account for the large and rather sudden concentration of
experimental physicists and cyclotroneers in Cambridge, while at the same time it would be
descriptive, in a sly way, of their purpose. In the interests of secrecy, they also hoped the disguise
would fool outsiders into thinking that they were engaged in research as altogether remote from
the war effort as nuclear fission, which was considered of no practical significance as compared to
radar. The “Rad Lab” met with unanimous approval and was officially adopted.
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