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We present three methods for calculating the Feynman propagator for the nonrelativistic harmonic
oscillator. The first method was employed by Schwinger a half a century ago, but has rarely been
used in nonrelativistic problems since. Also discussed is an algebraic method and a path integral
method so that the reader can compare the advantages and disadvantages of each method. ©2003

American Association of Physics Teachers.
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I. INTRODUCTION

The purpose of this paper is to discuss three methods
calculating the Feynman propagator. The methods are
plied to the harmonic oscillator so that they can be compa
by the reader. The harmonic oscillator was chosen becau
its intrinsic interest and because it is the simplest nontriv
system after the free particle~see, for instance, Refs. 1 an
2!. The first method we will discuss was developed
Schwinger3 to treat effective actions in quantum electrod
namics and is based on the solution of the Heisenberg op
tor equations of motion. The use of proper operator order
and the subsidiary and initial conditions yields the propa
tor. The second method is based on algebraic techniq
based on factorizing the time evolution operator using
Baker–Campbell–Hausdorff formulas.4,5 By using factoriza-
tion, the completeness relations, and the value of the ma
element ^xup&, we can determine the propagator. Th
method is close to the one presented in Refs. 6 and 7,
here we will use the Baker–Campbell–Hausdorff formu
in a slightly different way. The third method is a path integ
calculation that is based on a recurrence relation for the p
uct of infinitesimal propagators. As far as we know, this
currence relation has not appeared in previous discussion
the one-dimensional harmonic oscillator path integral,
though it is inspired by a similar relation in the thre
dimensional system.8

To establish our notation, we write the Feynman propa
tor for a time independent nonrelativistic system with Ham
tonian operatorĤ in the form:

K~x9,x8;t!5u~t!^x9uÛ~t!ux8&, ~1!

whereÛ(t) is the time evolution operator:

Û~t!5exp~2 iĤ t/\!, ~2!

andu(t) is the step function defined by

u~t!5H 1 if t>0

0 if t,0.
~3!

II. SCHWINGER’S METHOD

This method was introduced in 1951 by Schwinger in
context of relativistic quantum field theory3 and it has since
been employed mainly in relativistic problems, such as
calculation of bosonic9 and fermionic10–13 Green’s functions
in external fields. However, this powerful method is also w
483 Am. J. Phys.71 ~5!, May 2003 http://ojps.aip.org/aj
or
p-
d
of
l

ra-
g
-
es
e

ix

ut
s
l
d-
-
of

l-

-
-

e

e

l

suited to nonrelativistic problems, although it has rarely be
used in the calculation of nonrelativistic Feynman propa
tors. Recently, this subject has been discussed in an ele
way by using the quantum action principle.14 Before this
time, only a few papers had used Schwinger’s method in
context.15–17We adopt here a simpler approach that we th
is better suited for students and teachers.

First, observe that fort.0, Eq.~1! leads to the differential
equation for the Feynman propagator:

i\
]

]t
K~x9,x8;t!5^x9uĤexpS 2

i

\
Ĥt D ux8&. ~4!

By using the general relation between operators in
Heisenberg and Schro¨dinger pictures,

ÔH~ t !5eiĤ t/\ÔSe2 iĤ t/\, ~5!

it is not difficult to show that ifux& is an eigenvector of the

operatorX̂ with eigenvaluex, then it is also true that

X̂~ t ! ux,t&5xux,t&, ~6!

where

X̂~ t !5eiĤ t/\X̂e2 iĤ t/\, ~7!

and ux,t& is defined as

ux,t&5eiĤ t/\ux&. ~8!

Using this notation, the Feynman propagator can be writ
as:

K~x9,x8;t!5^x9,tux8,0&, ~9!

where

X̂~t!ux9,t&5x9ux9,t&, ~10a!

X̂~0!ux8,0&5x8ux8,0&. ~10b!

The differential equation for the Feynman propagator, E
~4!, takes the form

i\
]

]t
^x9,tux8,0&5^x9,tuĤux8,0& ~t.0!. ~11!

The form of Eq.~11! is very suggestive and is the startin
point for the very elegant operator method introduced
Schwinger.3 The main idea is to calculate the matrix eleme
on the right-hand side of Eq.~11! by writing Ĥ in terms of
483p/ © 2003 American Association of Physics Teachers
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the operators X̂(t) and X̂(0), appropriately ordered
Schwinger’s method can be summarized by the follow
steps:

~1! Solve the Heisenberg equations for the operatorsX̂(t)

and P̂(t), which are given by:

i\
d

dt
X̂~ t !5@X̂~ t !,Ĥ#, i\

d

dt
P̂~ t !5@ P̂~ t !,Ĥ#. ~12!

Equations~12! follow directly from Eq.~5!.
~2! Use the solutions obtained in step~1! to rewrite the

Hamiltonian operatorĤ as a function of the operatorsX̂(0)

andX̂(t) ordered in such a way that in each term ofĤ, the

operatorX̂(t) must appear on the left-hand side, while t

operatorX̂(0) must appear on the right-hand side. This
dering can be done easily with the help of the commuta

@X̂(0),X̂(t)# ~see Eq.~25!!. We shall refer to the Hamil-
tonian operator written in this way as the ordered Ham
tonian operatorĤord(X̂(t),X̂(0)). After this ordering, the
matrix element on the right-hand side of Eq.~11! can be
readily evaluated:

^x9,tuĤux8,0&5^x9,tuĤord~X̂~t!,X̂~0!!ux8,0&

[H~x9,x8;t!^x9,tux8,0&, ~13!

where we have defined the functionH. The latter is a
c-number and not an operator. If we substitute this resul
Eq. ~11! and integrate overt, we obtain:

^x9,tux8,0&5C~x9,x8!expS 2
i

\E
t

H~x9,x8;t8!dt8D ,

~14!

whereC(x9,x8) is an arbitrary integration constant.
~3! The last step is devoted to the calculation ofC(x9,x8).

Its dependence onx9 andx8 can be determined by imposin
the following conditions:

^x9,tuP̂~t! ux8,0&52 i\
]

]x9
^x9,tux8,0&, ~15a!

^x9,tuP̂~0!ux8,0&51 i\
]

]x8
^x9,tux8,0&. ~15b!

These equations come from the definitions in Eq.~10! to-
gether with the assumption that the usual commutation r
tions hold at any time:

@X̂~t!,P̂~t!#5@X̂~0!,P̂~0!#5 i\. ~16!

After using Eq.~15!, there is still a multiplicative factor to be
determined inC(x9,x8). This can be done simply by impos
ing the propagator initial condition:

lim
t→01

^x9,tux8,0&5d~x92x8!. ~17!

Now we are ready to apply this method to a large class
interesting problems. In particular, we shall calculate
Feynman propagator for the harmonic oscillator.

The Hamiltonian operator for the harmonic oscillator c
be written as
484 Am. J. Phys., Vol. 71, No. 5, May 2003
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Ĥ5
P̂2~t!

2m
1

1

2
mv2X̂2~t!, ~18!

or

Ĥ5
P̂2~0!

2m
1

1

2
mv2X̂2~0!, ~19!

because the Hamiltonian operator is time independent,
spite the fact that the operatorsP̂(t) andX̂(t) are explicitly
time dependent. It is matter of choice whether to work w
the Hamiltonian operator given by Eq.~18! or by Eq. ~19!.
For simplicity, we choose the latter.

As stated in step~1!, we start by writing down the corre
sponding Heisenberg equations:

d

dt
X̂~ t !5

P̂~ t !

m
, ~20a!

d

dt
P̂~ t !52mv2X̂~ t !, ~20b!

whose solutions permit us to write fort5t that

X̂~t!5X̂~0!cosvt1
P̂~0!

mv
sin vt. ~21!

For later convenience, we also write the corresponding
pression forP̂(t):

P̂~t!52mvX̂~0!sin vt1 P̂~0!cosvt. ~22!

To complete step~2! we need to rewriteP̂(0) in terms of

X̂(t) and X̂(0), which can be done directly from Eq.~21!:

P̂~0!5
mv

sin~vt!
@X̂~t!2X̂~0!cosvt#. ~23!

If we substitute this result into Eq.~19!, we obtain

Ĥ5
mv2

2sin2~vt!
@X̂2~t!1X̂2~0!cos2~vt!

2X̂~0!X̂~t!cos~vt!2X̂~t!X̂~0!cos~vt!#

1 1
2 mv2X̂2~0!. ~24!

Note that the third term in Eq.~24! is not written in the
appropriate order. By using the commutation relation

@X̂~0!,X̂~t!#5F X̂~0!,X̂~0!cos~vt!1
P̂~0!

mv
sin~vt!G

5
i\

mv
sin~vt!, ~25!

it follows immediately that

X̂~0!X̂~t!5X̂~t!X̂~0!1
i\

mv
sin vt. ~26!

If we substitute Eq.~26! into Eq.~24!, we obtain the ordered
Hamiltonian:
484Barone, Boschi-Filho, and Farina
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mv2

2 sin2~vt!
@X̂2~t!1X̂2~0!22X̂~t!X̂~0!cos~vt!#

2
i\v

2
cot~vt!. ~27!

Once the Hamiltonian operator is appropriately order
we can find the functionH(x9,x8;t) directly from its defi-
nition, given by Eq.~13!:

H~x9,x8,t!5
^x9,tuĤux8,0&

^x9,tux8,0&

5
mv2

2
@~x921x82!csc2~vt!

22x9x8cot~vt!csc~vt!#2
i\v

2
cot~vt!.

~28!

By using Eq. ~14!, we can express the propagator in t
following form:

^x9,tux8,0&5C~x9,x8! expH 2
i

\E
t

dt8Fmv2

2
~~x921x82!

3csc2 vt822x9x8cot~vt!cscvt8!

2
i\v

2
cot vt8G J . ~29!

The integration overt8 in Eq. ~29! can be readily evaluated

^x9,tux8,0&5
C~x9,x8!

Asin~vt!
expH imv

2\ sin~vt!

3@~x921x82!cos~vt!22x9x8#J , ~30!

where C(x9,x8) is an arbitrary integration constant to b
determined according to step~3!.

The determination ofC(x9,x8) is done with the aid of
Eqs.~15! and ~17!. However, we need to rewrite the oper
tors P̂(0) andP̂(t) in terms of the operatorsX̂(t) andX̂(0),

appropriately ordered. ForP̂(0) this task has already bee

done~see Eq.~23!!, and for P̂(t) we find after substituting
Eq. ~23! into Eq. ~22!:

P̂~t!5mv cot~vt!@X̂~t!2X̂~0!cosvt#

2mvX̂~0!sin~vt!. ~31!

Then, by inserting Eqs.~31! and~30! into Eq. ~15a! it is not
difficult to show that:

]C~x9,x8!

]x9
50. ~32!

Analogously, by substituting Eqs.~23! and ~30! into Eq.
~15b! we have that]C(x9,x8)/]x850. The last two relations
tell us thatC(x9,x8)5C, that is, it is a constant independe
of x9 andx8. In order to determine the value ofC, we first
take the limitt→01 on ^x9,tux8,0&. If we use Eq.~30!, we
find that
485 Am. J. Phys., Vol. 71, No. 5, May 2003
,

lim
t→01

^x9,tux8,0&5 lim
t→01

C

Avt
expF im

2\t
~x92x8!2G

5CA2p i\

mv
d~x92x8!. ~33!

If we compare this result with the initial condition, Eq.~17!,
we obtainC5Amv/2p i\. By substituting this result forC
into Eq. ~30!, we obtain the desired Feynman propagator
the harmonic oscillator:

K~x9,x8;t!5^x9,tux8,0&

5A mv

2p i\ sin~vt!
expH imv

2\ sin~vt!

3@~x921x82!cos~vt!22x9x8#J . ~34!

In Sec. V we shall see how to extract from Eq.~34! the
eigenfunctions and energy eigenvalues for the harmonic
cillator and also how to obtain, starting from the Feynm
propagator, the corresponding partition function.

For other applications of this method we suggest the
lowing problems for the interested reader. Calculate
Feynman propagator using Schwinger’s method for~i! the
constant force problem;~ii ! a charged spinless particle in
uniform magnetic field; and~iii ! a charged spinless particl
in a harmonic oscillator potential placed in a uniform ma
netic field.

We finish this section by mentioning that Schwinge
method can be applied to time-dependent Hamiltonians
well.15,16 It also provides a natural way of establishing t
midpoint rule in the path integral formalism~see Sec. IV!
when electromagnetic fields are present.17

III. ALGEBRAIC METHOD

The origin of the algebraic method dates back to the
ginning of quantum mechanics, with the matrix formulatio
of Jordan, Heisenberg, and Pauli among others. Here,
present an algebraic method for calculating Feynman pro
gators which involves manipulations of momentum and p
sition operators.4,18–21This is a powerful method because
is connected with the dynamical symmetry groups of
system at hand. A knowledge of the underlying Lie algeb
can be used to calculate eigenvalues without explicit kno
edge of the eigenfunctions.7,18,19 It can also be used to cal
culate propagators for a wide range of problems.6,22–26 A
coherent-state version of the algebraic method for differ
problems has been discussed also.23,27 Because the use o
these mathematical tools can be a bit cumbersome at
reading, we prefer to explore a simpler version of th
method, which is close to that in Ref. 6. For this purpose,
calculation of the propagator for the one-dimensional h
monic oscillator is excellent.

The Hamiltonian operatorĤ for a nonrelativistic system
can usually be written as a sum of terms involving the o
eratorsP̂ and X̂ which do not commute. Hence, the facto

ization of the time evolution operatorÛ(t)5exp(2itĤ/\)
into a product of simpler exponential operators involv
some algebra. This algebra deals basically with the com
tation relations among these noncommuting operators,
uses formulas generically known as Baker–Campbe
485Barone, Boschi-Filho, and Farina
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Hausdorff ~see Eq.~35!!. The use of those formulas is th
essence of the algebraic method, because it is easier to
culate the action of these simpler exponential operators
the statesux& or up&, than to calculate the action on the
same states of the original time evolution operator. The a
braic method can be summarized by the following steps:

~1! First rewrite the evolution operatorÛ(t) as a product

of exponentials of the operatorsX̂, P̂, andP̂X̂. ~Note that, in

contrast with Schwinger’s method, here the operatorsP̂ and

X̂ are time independent, that is, they are in the Schro¨dinger
representation.! The factorization can be done with the he
of the Baker–Campbell–Hausdorff formula4,5

eABe2A5C, ~35!

whereA, B, andC are operators~for simplicity we omit the
caret on the operators! and

C5B1@A,B#1
1

2!
@A,@A,B##1

1

3!
@A,@A,@A,B###1•••,

~36!

valid for anyA andB. Equation~35! can be iterated as:

C25~eABe2A!~eABe2A!5eAB2e2A,

A

Cn5eABne2A. ~37!

If we expand exp(C) and identify each powerCn in Eq. ~37!,
we find

eC5eAeBe2A, ~38!

which can be inverted to give

eB5e2AeCeA. ~39!

We then identifyB52 i tĤ/\ and find a factorized form o
the evolution operator for a conveniently chosen operatoA.
The specific choice forA depends on the explicit form of th
Hamiltonian. This factorization can be repeated as m
times as needed. Note that, in general, the operatorC in Eq.
~36!, which is an infinite series withB and multiple commu-
tators ofA and B, is more complicated than the operatorB
alone, which is proportional to the Hamiltonian. However,
we choose the operatorA conveniently, this series can term
nate and the remaining terms from the commutators can
cel some of those terms originally present inB. A more sys-
tematic way of doing this factorization is to use the L
algebra related to the problem under study. This way will
sketched at the end of this section.

~2! Next substitute the factorized Hamiltonian into th
definition of the Feynman propagatorK(x9,x8;t), Eq. ~1!,
and calculate the action of the exponential of the opera
X̂, P̂, and P̂X̂ on the stateux&. For the operatorX̂ this

calculation is trivial and forP̂ we just need to use the closu
relation 15*dpup&^pu and the matrix element^xup&
5(1/2p\)1/2exp(ixp). For the mixed operatorP̂X̂ we need
to use

^p8uexp~2 ig P̂X̂/\!up&5e2gd~p82e2gp!, ~40!

whereg is an arbitrary parameter to be chosen later. Eq
tion ~40! comes from the relation

exp~2 ig P̂X̂/\!up&5e2gue2gp&. ~41!
486 Am. J. Phys., Vol. 71, No. 5, May 2003
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Before we apply the algebraic method to a specific pr
lem, we derive Eq.~41!. We first note that

exp~2 ig P̂X̂/\!P̂up&5pexp~2 ig P̂X̂/\!up&. ~42!

Equation~42! can be rewritten as

@exp~2 ig P̂X̂/\!P̂ exp~ ig P̂X̂/\!#exp~2 ig P̂X̂/\!up&

5p exp~2 ig P̂X̂/\!up&, ~43!

so that we can use the Baker–Campbell–Hausdorff formu
~35! to rewrite the term in the square brackets as:

exp~2 ig P̂X̂/\!P̂ exp~ ig P̂X̂/\!

5S 11g1
1

2!
g21

1

3!
g31 . . . D P̂5egP̂. ~44!

If we substitute the above result into Eq.~43!, we have

P̂@exp~2 ig P̂X̂/\!up&] 5e2gp@exp~2 ig P̂X̂/\!up&], ~45!

which shows that exp(2igP̂X̂/\)up& is an eigenstate of the

operator P̂ with eigenvaluepe2g. This eigenstate can b
written asue2gp&, up to a constantCg , so that

exp~2 ig P̂X̂/\!up&5Cgue2gp&. ~46!

To determine the constantCg , we note that

^p8uexpS i

\
gX̂P̂Dexp~2 ig P̂X̂/\!up&5uCgu2^e2gp8ue2gp&.

~47!

If we use the relation@X̂P̂,P̂X̂#50, and Eq.~39!, we have

^p8uexp~ ig@X̂,P̂#/\!up&5uCgu2d~e2g~p82p!!, ~48!

so that

e2g d~p2p8!5uCgu2 eg d~p82p!. ~49!

Equation ~49! determinesCg5e2g and finally yields Eq.
~41!.

Now we are ready to apply the algebraic method to so
some quantum mechanical problems. For the harmonic o
lator the time evolution operator~2! becomes

Û~t!5expF2 i tS P̂2

2m
1

1

2
mv2X̂2D Y \G . ~50!

We follow step~1!, chooseA5aX̂2 wherea is an arbitrary

parameter andB52 i tĤ/\, and obtain from Eqs.~36! and
~38!

exp~aX̂2!exp~2 i tĤ/\!exp~2aX̂2!

5expH 2 i t

\
F P̂2

2m
1

i\a

m
~X̂P̂1 P̂X̂!

1
m

2 Fv22S 2a\

m D 2G X̂2G J . ~51!

Note that even though the Baker–Campbell–Hausdorff f
mulas have an infinite number of terms, the number of n
vanishing commutators betweenĤ and X̂2 is finite.
486Barone, Boschi-Filho, and Farina
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The general idea of the algebraic method is that we w
to factorize the time evolution operator. In this case, a ste
this direction corresponds to canceling the term withX̂2 on
the right-hand side of Eq.~51!. This is easily achieved with
the choice

a5
mv

2\
. ~52!

Then by using the commutation relation@X̂,P̂#5 i\, we
have

exp~2 i tĤ/\!5eivt/2exp~2aX̂2!

3expF2
i

\
tS P̂2

2m
1 iv P̂X̂D Gexp~aX̂2!.

~53!

We can repeat step~1! to reduce the above operator co
taining P̂2 between brackets into a product of simpler term

This time we need to use products ofP̂2 instead ofX̂2. If we
use Eqs.~35! and ~36!, we obtain

exp~b P̂2!S P̂2

2m
1 iv P̂X̂D exp~2b P̂2!

5S 1

2m
12v\b D P̂21 iv P̂X̂ ~54!

and to eliminate the term proportional toP̂2 on the right-
hand side we take

b52
1

4mv\
, ~55!

which gives from Eqs.~39! and ~54!

expF2
i

\
tS P̂2

2m
1 iv P̂X̂D G

5exp~2b P̂2!expF2
i

\
~ ivt!P̂X̂Gexp~b P̂2!. ~56!

If we substitute Eq.~56! into Eq. ~53!, we have that

expS 2
i

\
tĤ D5eivt/2 exp~2aX̂2!exp~2b P̂2!

3expF2
i

\
~ ivt!P̂X̂Gexp~b P̂2!exp~aX̂2!.

~57!

Equation~57! is the expression for the time evolution oper
tor written as a product of simpler operators obtained
applying step~1! of the algebraic method.

We next follow step~2!, insert Eq.~57! into the definition
of the Feynman propagator Eq.~1!, and find

K~x9,x8;t!5expF2a~x922x82!1
ivt

2 G E dpdp8

2p\

3expF i

\
~p8x92px8!2b~p822p2!G

3^p8uexpF2
i

\
~ ivt!P̂X̂G up&. ~58!
487 Am. J. Phys., Vol. 71, No. 5, May 2003
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If we use Eq.~40! with g5 ivt, and the definitions~52!
and ~55!, we have

K~x9,x8;t!5
1

2p\
expF2

mv

\ S ~x922x82!

12
~e2 ivtx92x8!2

12e22ivt D 2
ivt

2 G
3E dpexpF2S 12e22ivt

4mv\ D
3S p22imv

~e2 ivtx92x8!

12e22ivt D 2G . ~59!

This integral has a Gaussian form and can be easily d
giving the harmonic oscillator propagator:

K~x9,x8;t!5A mv

2p i\ sinvt

3expF imv

2\ sinvt
~~x921x82!cosvt22x9x8!G ,

~60!

where we used that (12e22ivt)52ie2 ivtsinvt and Euler’s
formula, eivt5cosvt1i sinvt. This result naturally agree
with the one obtained in Sec. III using Schwinger’s metho

Before we finish this section, we want to comment that
algebraic method can be discussed on more formal grou
identifying the underlying Lie algebra, and using it to expli
itly solve the problem of interest. For the one-dimension
harmonic oscillator we can find a set of operators

L252 1
2]xx , L15 1

2x
2, L35 1

2x]x1 1
4, ~61!

such that the Hamiltonian operator can be written asĤ
5(\/m)L21mv2L1 . The above operators satisfy th
SO~3! Lie algebra

@L1 ,L2#52L3 , @L3 ,L6#56L6 . ~62!

This algebra is isomorphic to the usual SU~2! Lie algebra of
the angular momenta and can be used to construct spe
Baker–Campbell–ausdorff formulas,20,21 so that given the
algebra, the solution arises naturally.6 If one considers three
dimensional problems, which are more involved because
the presence of terms proportional to 1/r 2, this algebra can
still be used to find the propagator, but the operators hav
be generalized.18,19 These generalized operators can be u
to solve a wide range of problems.22–26

IV. PATH INTEGRAL METHOD

The path integral formalism was introduced by Feynma28

in 1948, following earlier ideas developed by Dirac.29 In the
last few decades, path integral methods have become
popular, mainly in the context of quantum mechanics, sta
tical physics, and quantum field theory. Since the pioneer
textbook of Feynman and Hibbs,30 many others have bee
written on this subject, not only in quantum mechanics,8,31–34

but also in condensed matter,35 as well as quantum field
theory,36–38 to mention just a few.

In this section we shall apply Feynman’s method to ag
obtain the harmonic oscillator quantum propagator alre
487Barone, Boschi-Filho, and Farina
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established in Secs. II and III. The purpose here is to ev
ate the corresponding path integral explicitly, without ma
ing use of the semiclassical approach which is often use
the literature. Of course this kind of direct calculation a
ready exists in the literature, see for example Refs. 1, 38,
39. However, we shall present an alternative and very sim
procedure.

The path integral expression for the quantum propagato
formally given by

K~xN ,x0 ;t!5Ex~0!5x0
x~t!5xN

@Dx#eiS(x)/\, ~63!

whereS(x) is the action functional:

S~x![E
t0

tNF1

2
mẋ2~ t !2V~x~ t !!Gdt, ~64!

and@Dx# is the functional measure. According to Feynma
prescription, we have that:

K~xN ,x0 ;t!

5 lim
N→`
«→0

A m

2p i\«E )
j 51

N21 SA m

2p i\«
dxj D

3expH i

\ (
k51

N Fm~xk2xk21!2

2«
2«VS xk1xk21

2 D G J ,

~65!

whereN«5t. With this prescription, the scenario is the fo
lowing: summation over all the functionsx means to sum
over all the polynomials in the plane (t,x(t)), starting at
(x0 ,t0) and finishing at (xN ,tN), which gives rise to the
integrations over the variablesxj[x(t j ) from 2` to `,
wheret j5t01 j «, with j 51,2,. . . ,N21. Hence, to evaluate
a path integral means to calculate an infinite number of
dinary integrals, which requires some kind of recurrence
lation.

When electromagnetic potentials are absent as is the
here, it is not necessary to adopt the midpoint rule for
potentialV(x) as given by Eq.~65!, and other choices ca
also be made. Instead of using the midpoint rule we s
write the discretized version of the action as

S>(
j 51

N
m~xj2xj 21!2

2t j
2t j

1

2
~V~xj !1V~xj 21!!, ~66!

where for generality we have takent j as thej th time interval
so thatt5( j 51

N t j . Then, we write the Feynman propagat
in the form:

K~xN ,x0 ;t!5 lim
N→`

E )
j 51

N

K~xj ,xj 21 ;t j ! )
k51

N21

dxk , ~67!

where the propagator for an infinitesimal time interval
given by

K~xj ,xj 21 ;t j !5A m

2p i\t j
expH i

\ Fm~xj2xj 21!2

2t j

2t j

1

2
~V~xj !1V~xj 21!!G J . ~68!
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If we use the Lagrangian for the harmonic oscillato
namely,

L~x,ẋ!5 1
2mẋ22 1

2mv2x2, ~69!

the infinitesimal propagator, given by Eq.~68!, takes the
form:

K~xj ,xj 21 ;t j !5Amv

2p\
A 1

vt j
expH imv

2\

1

vt j
FS12

v2t j
2

2 D
3~xj

21xj 21
2 !G22xjxj 21J . ~70!

To calculate this infinitesimal propagator we now defi
new variablesf j such that:

sin f j5vt j , ~71!

which implies thatf j>vt j and cosfj>12v2tj
2/2. In fact,

other variable transformations could be tried, but this is
simplest one that we were able to find that allows an e
iteration through a convolution-like formula. It is also hel
ful to introduce a functionF:

F~h,h8;f!5A mv

2p i\
A 1

sin f
expF imv

2\

1

sin f

3~cosf~h21h82!22h h8!G . ~72!

Then, using Eqs.~70!–~72!, we can rewrite the harmonic
oscillator propagator~67! as:

K~xN ,x0 ;t!5 lim
N→`

E )
j 51

N

F~xj ,xj 21 ;f j ! )
k51

N21

dxk .

~73!

The functionF has an interesting property:

E
2`

`

F~h9,h;f9!F~h,h8;f8!dh5F~h9,h8;f91f8!.

~74!

This can be seen by a simple direct calculation. From
definition ~72!, we have that

E
2`

`

F~h9,h;f9!F~h,h8;f8!dh

5
mv

2p i\
A 1

sin f9sin f8
expF imv

2\ S cosf9

sin f9
h92

1
cosf8

sin f8
h82D G E

2`

`

dh expF imv

2\
~a h222hb!G ,

~75!

where we have defined

a5
sin~f91f8!

sin f9sin f8
, b5

h9sin f81h8sin f9

sin f9sin f8
. ~76!

By completing the square in the integrand of Eq.~75! and
calculating the Fresnel integral, we obtain
488Barone, Boschi-Filho, and Farina
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E
2`

`

F~h9,h;f9!F~h,h8;f8!dh

5
mv

2p i\
A2p i\

mva
A 1

sin f9 sin f8

3expF imv

2\ S cosf9

sin f9
h921

cosf8

sin f8
h822

b2

a D G . ~77!

If we use the definitions in Eq.~76!, as well as some trivia
manipulations with trigonometric functions, it is straightfo
ward to show that

E
2`

`

F~h9,h;f9!F~h,h8;f8!dh

5A mv

2p i\
A 1

sin~f91f8!
expF imv

2\

1

sin~f91f8!

3~cos~f91f8!~h921h 82!22h9h 8!G , ~78!

which is precisely Eq.~74!. We now definex95xN , x8
5x0 , use the fact that limN→`( j 51

N f j5vt and the result in
Eq. ~73! to finally obtain the desired propagator:

K~x9,x8;t!5F~x9,x8;vt!

5A mv

2p i\ sinvt

3expF imv

2\ sinvt
~cosvt~x921x82!22x9x8!G .

~79!

This result coincides with the expressions obtained in
previous sections for the harmonic oscillator. Let us n
review some of the applications of the Feynman propaga

V. EIGENFUNCTIONS, EIGENVALUES AND THE
PARTITION FUNCTION

In this section we will show how to obtain the stationa
states and the corresponding energy levels, as well as
partition function of the quantum harmonic oscillator, d
rectly from the expression of the Feynman propagator ca
lated earlier. Although these tasks are well known in
literature ~see, for instance, Refs. 38 and 40!, we shall
present them here for completeness.

To obtain the energy eigenstates and eigenvalues, we
to recast the propagator~79! in a form that permits a direc
comparison with the spectral representation for the Feynm
propagator given by

K~x,x8;t!5Q~t!(
n

fn~x!fn* ~x8!e2 iEnt/\ ~t.0!. ~80!

If we define the variablez5e2 ivt, we can write

sin~vt!5
1

2i

12z2

z
, ~81a!

cos~vt!5
11z2

2z
. ~81b!
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We further definej8[Amv/\x8 and j9[Amv/\x9, and
express the harmonic oscillator propagator to the form:

K~x9,x8;t!5Amvz

p\
~12z2!21/2

3expH 1

12z2 F2j8j9z2~j821j92!S 11z2

2 D G J
~82!

5Amvz

p\
~12z2!21/2 expF2

1

2
~j821j92!G

3expF2j8j9z2~j821j92!z2

12z2 G , ~83!

where we used the identity

11z2

2~12z2!
5

1

2
1

z2

12z2
. ~84!

Now we consider Mehler’s formula:41

~12z!21/2 expF2xyz2~x21y2!z2

12z2 G
5 (

n50

`

Hn~x!Hn~y!
zn

2nn!
~ uzu,1!. ~85!

However, some care must be taken in order to use Eq.~85! in
Eq. ~83!, becauseuzu51 and Mehler’s formula~85! requires
that uzu,1. This problem can be circumvented if we add
imaginary part tov, namely, if we letv→v2 i«, and take
«→0 after the calculations. Hence, if we use Eq.~85!, Eq.
~83! takes the form:

K~x9,x8;t!

5Amv

p\
expF2

mv

2\
~x921x82!G

3 (
n50

`

HnSAmv

\
x9DHnSAmv

\
x8D e2 ivt(n11/2)

2nn!
,

~86!

where we have let x5j95Amv/\x9 and y5j8
5Amv/\x8.

If we compare Eq.~86! with the spectral representatio
~80!, we finally obtain the well known results for the energ
eigenfunctions~apart from a phase factor! and energy levels,
respectively:

fn~x!5
1

A2nn!
S mv

p\ D 1/4

expS 2
mv

p\
x2DHnSAmv

\
xD ,

~87!

En5~n1 1
2!\v. ~88!

We finish this section by calculating the partition functio
for the harmonic oscillator. With this purpose in mind, rec
that the partition function in general can be written as:

Z~b!5Tr e2bĤ. ~89!
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The trace operation can be taken over a discrete basis
eigenfunctions of the Hamiltonian itself, or, more conv
niently here, over the continuous set of eigenstates of
position operator~denoted byux&):

Z~b!5E
2`

1`

dx ^xu e2bĤ ux&. ~90!

If we identify the integrand with the Feynman propaga
with the end pointsx85x95x andb5 i\t as the imaginary
time interval, we have

Z~b!5E
2`

1`

dx K~x,x;2 i\b!. ~91!

Then, from the harmonic oscillator propagator~79!, we
readily obtain

K~x,x;2 i\b!

5A mv

2p\ sinh~vb\!

3expF2
mv

\ sinh~vb\!
~cosh~vb\!21! x2G , ~92!

where we have used sin(2ia)52i sinha and cos(ia)
5cosha. By substituting Eq.~92! into Eq. ~91!, and evalu-
ating the remaining Gaussian integral, we finally obtain

Z~b!5A mv

2p\sinh~vb\!

3E
2`

`

expF2
mv x2

\
tanhS vb\

2 D Gdx

5
1

2sinh~ 1
2 vb\!

, ~93!

where we used the identities cosha2152 sinh2(a/2) and
sinh~a!52 sinh~a/2!cosh~a/2!. Equation~93! is the partition
function for the one-dimensional harmonic oscillator.

VI. CONCLUSIONS

We have rederived the one-dimensional harmonic osc
tor propagator using three different techniques. First we u
a method developed by Schwinger that is usually used
quantum field theory, but that is also well suited for nonr
ativistic quantum mechanical problems although rarely us
We hope that our presentation of this method will help
become better known among physics teachers and stud
Then we presented an algebraic method that deals with
factorization of the time evolution operator using the Bake
Campbell–Hausdorff formulas. We hope that our presen
tion will motivate teachers and students to learn more ab
such powerful methods, which are closely connected w
the use of Lie algebras. It is worth mentioning that the
methods can be applied not only in nonrelativistic quant
mechanics, but also in the context of relativistic theori
Finally, we presented a direct calculation of the Feynm
path integral for the one-dimensional harmonic oscillator
ing a simple but very convenient recurrence relation for
composition of infinitesimal propagators. We hope that
presentation of these three methods together with the ca
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lation of the Feynman propagator will help readers comp
the advantages and difficulties of each of them.
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there. The misleading name would account for the large and rather sudden concentration of
experimental physicists and cyclotroneers in Cambridge, while at the same time it would be
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