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Abstract
We show that in order to account for the repulsive Casimir effect in the parallel-
plate geometry in terms of the quantum version of the Lorentz force, it is
possible to introduce virtual surface densities of magnetic charge and currents.
The quantum version of the Lorentz force expressed in terms of the correlators
of the electric and magnetic fields for planar geometries then yields the Casimir
pressure correctly.

1. Introduction

Since its prediction by Casimir in 1948, the Casimir effect [1] has been the object of an
increasing number of theoretical and experimental investigations. This is due to growing
recognition of its fundamental importance in quantum field theory and also in elementary
particle physics, cosmology and condensed matter physics as well as its practical and decisive
role in nanotechnology. For an introduction to this remarkable effect, see for example [2]; for
an updated review of the recent research and applications see [3] and references therein.

Even in simple examples the Casimir interaction can exhibit surprising features. Some
time ago Gonzales [4], among other things, correctly pointed out that an alternative computation
of the Casimir force between two perfectly conducting plates can be carried out starting from
the consideration of the Lorentz force acting on the plates. The reason is that in this context
the quantum version of the Lorentz force is the only force that could act on a metallic plate
and therefore one should be able to obtain Casimir’s result from this physical fact. Here we
will develop this point of view further and consider its consequences when applied to Boyer’s
variant of the standard Casimir effect in which one of the conducting plates is replaced by
a magnetically permeable one [5]. We will show that when applied to this particular case
Gonzales’ conception of the Casimir interaction leads to the introduction of virtual magnetic
charges and currents.
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2. The standard Casimir effect

In order to state our point of view we begin by considering the standard experimental set-up
proposed by Casimir, which consists of two infinite perfectly conducting parallel plates kept
at a fixed distance a from each other. We will choose the coordinate axis in such a way that the
O Z direction is perpendicular to the plates. One of the plates will be placed at z = 0 and the
other one at z = a. Classically, the Lorentz force per unit area on, say, the conducting plate at
z = a is given by

�fe = 1

2
σe �E +

1

2c
�Ke × �B, (1)

where σe is the electric charge density and �Ke is the electric current surface density. The
boundary conditions on the electric and the magnetic fields on the plate are as follows: the
tangential components Ex and Ey of the electric field and the normal component Bz of the
magnetic field must be zero on the plate. Under the boundary conditions imposed on the field
at z = a, however, it is easily seen that the resultant classical Lorentz force is perpendicular to
the conducting plate. We expect the quantum version of equation (1) to show the same feature
and ultimately to be the source of the Casimir pressure between the two conducting plates. The
electric charge and current densities on the conducting plate are related to the fields through

n̂ · �E = 4πσe, (2)

n̂ × �B = 4π

c
�Ke, (3)

where n̂ is the normal to the plate under consideration. The quantum version of equation (1)
reads

〈 �fe〉0 = 1

8π
〈 �E2 − �B2〉0n̂, (4)

and can be obtained by combining the vacuum expectation value of equations (1)–(3). In order
to proceed—from now on we depart from [4]—we need to evaluate the vacuum expectation
value of the quantum operators Ei(�r , t)E j (�r , t), Bi(�r , t)B j (�r , t) and Ei (�r, t)B j (�r , t). The
evaluation of these correlators depends on the specific choice of boundary conditions.
A regularization recipe is also necessary because these objects are mathematically ill-
defined. Regularization recipes vary from the relatively simple cut-off method employed by
Casimir himself [1] to the sophisticated and mathematically elegant generalized zeta-function
techniques (see [6] for an introduction to these techniques). Here we will make use of the
results and direct the reader to the relevant references. The electric field correlators for a pair
of perfectly conducting plates are given by [9–11, 13]

〈Ei (�r , t)E j (�r , t)〉0 =
(

π

a

)4 2

3π

[
(−δ

‖
i j + δ⊥

i j )

120
+ δi j F(ξ)

]
, (5)

where δi j is the Kronecker delta, δ
‖
i j := δi xδ j x + δiyδ j y and δ⊥

i j := δi zδ j z . The function F(ξ)

with ξ := πz/a is defined by

F(ξ) := −1

8

d3

dξ3

1

2
cot(ξ), (6)

and its expansion about ξ = ξ0 is given by

F(ξ) ≈ 3
8 (ξ − ξ0)

−4 + 1
120 + O[(ξ − ξ0)]2. (7)

Notice that due to the behaviour of F(ξ) near ξ0 = 0, π , strong divergences control the
behaviour of the correlators near the plates. The corresponding magnetic field correlators are

〈Bi (�r , t)B j (�r, t)〉0 =
(

π

a

)4 2

3π

[
(−δ

‖
i j + δ⊥

i j )

120
− δi j F(ξ)

]
. (8)
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A direct evaluation also shows that the correlators 〈Ei(�r , t)B j(�r , t)〉0 are zero. For the purposes
of calculation it is convenient to consider a third conducting plate placed perpendicularly to
the O Z axis at z = �. Consider the plate at z = a. The Lorentz force per unit area on its left
side (n̂ = −ẑ) reads

〈 f L
z 〉0 = − 1

8π
〈 �E2 − �B2〉0 ≈ − 3

16π2(z − a)4
− π2

240 a4
, (9)

where we have also made use of equation (7). On the other hand, after simple modifications
in equations (5), (8) and (7) the Lorentz force on the right side of the plate (n̂ = ẑ) reads

〈 f R
z 〉0 = 1

8π
〈 �E2 − �B2〉0 ≈ 3

16π2(z − a)4
+

π2

240 (� − a)4
. (10)

Adding the forces on both sides of the plate and setting � → ∞ we obtain the well known
result

〈 fz〉0 = 〈 f R
z 〉0 + 〈 f R

z 〉0 = − π2

240 a4
. (11)

The minus sign means that the probe plate at z = a is attracted towards the other one at the
origin.

3. The repulsive version of the standard Casimir effect

Let us now consider an alternative set-up to the standard one in which a perfectly conducting
plate is placed at z = 0 and a perfectly permeable one is placed at z = a. This set-up was
analysed for the first time by Boyer in the context of stochastic electrodynamics [5], a kind of
classical electrodynamics that includes the zero-point electromagnetic radiation, and leads to
the simplest example of a repulsive Casimir interaction. For alternative evaluations see [7, 8].
The boundary conditions now are:

(a) the tangential components Ex and Ey of the electric field as well as the normal component
Bz of the magnetic field must vanish on the surface of the plate at z = 0;

(b) the tangential components of Bx and By of the magnetic field as well as normal component
Ez of the electric field must vanish on the surface of the plate at z = a.

From the classical point of view the perfectly permeable plate at z = a poses a problem when
we apply equation (1) to it. This is so because due to the boundary conditions this time the
Lorentz force on either side of the plate is parallel to the permeable plate and therefore the
resultant Lorentz force will also be parallel to the plate. This is a puzzling feature if we wish
to describe the Casimir interaction between the plates through the Lorentz force. Things can
be mended, however, if we allow for a virtual surface magnetic charge density σm and a virtual
magnetic charge current surface density �Km . In this case the modified Lorentz force per unit
area on the permeable plate reads

�fm = 1

2
σm �B − 1

2c
�Km × �E . (12)

The charge and current surface densities are related to the fields through

n̂ · �B = 4πσm, (13)

n̂ × �E = −4π

c
�Km . (14)

It is easily seen that the modified Lorentz force given by equation (12) combined with
the boundary conditions on the permeable plate yields on either side of the plate a force
perpendicular to the plate, as must be the case. Proceeding as above we now have

〈 �fm〉0 = 1

8π
〈 �B2 − �E2〉0n̂. (15)



N8 Note

For Boyer’s set-up the relevant correlators were evaluated in [12, 13]. The results are

〈Ei (�r , t)E j (�r , t)〉0 =
(

π

a

)4 2

3π

[(
−7

8

)
(−δ

‖
i j + δ⊥

i j )

120
+ δi j G(ξ)

]
, (16)

〈Bi (�r , t)B j (�r, t)〉0 =
(

π

a

)4 2

3π

[(
−7

8

)
(−δ

‖
i j + δ⊥

i j )

120
− δi j G(ξ)

]
, (17)

where

G(ξ) = −1

8

d3

dξ3

1

2 sin(ξ)
. (18)

Near ξ = 0 the function G(ξ) behaves as

G(ξ) = 3
8ξ−4 − 7

8
1

120 + O(ξ2), (19)

but near ξ = π its behaviour is slightly different

G(ξ) = − 3
8 (ξ − π)−4 + 7

8
1

120 + O[(ξ − π)2]. (20)

Again, a direct calculation shows that 〈Ei (�r , t)B j (�r , t)〉0 = 0 for this case also.
To obtain the Casimir force it is convenient to replace the third plate at z = � by a

permeable one. It is not hard to see that if we do so we can use equations (5) and (8) in the
region between the two permeable plates with small modifications. The force on the left side
(n̂ = −ẑ) of the permeable plate at z = a then reads

〈 f L
m,z 〉0 ≈ − 3

16π2(z − a)4
+

7

8
× π2

240 a4
, (21)

and the force on the right side is

〈 f R
m,z 〉0 ≈ 3

16π2(z − a)4
+

π2

240 (� − a)4
. (22)

As before we add the forces on each side and set � → ∞ to obtain the repulsive Casimir force
per unit area

〈 fm,z 〉0 = 〈 f L
m,z 〉0 + 〈 f R

m,z 〉0 = 7

8
× π2

240 a4
, (23)

in agreement with Boyer [5]. Notice that this time the force per unit area is repulsive. Notice
also that in both cases the divergent pieces cancel out; these cancellations yield finite Casimir
energies [9, 11–13].

4. Conclusions

As we can see the introduction of virtual magnetic charges and currents can account for
Boyer’s variant of the Casimir effect in terms of the quantum version of the Lorentz force.
Of course, for other geometries and boundary conditions, for example a perfectly conducting
cube, the Casimir force can be repulsive and can be accounted for by the usual virtual electric
charges and currents. On the other hand, it is plausible to state that whenever we have an
ideal magnetically permeable wall as one of the confining surfaces a qualitative analysis
of the interaction between the zero-point electromagnetic fields and this confining surface,
which is modelled by appropriate boundary conditions, will show the need to introduce virtual
magnetic charges and currents. The introduction of these charges and currents avoids the need
to construct a model of the Casimir interaction based on an appropriate distribution of amperian
currents, a considerably harder task.

As a final remark we observe that in the framework of the usual cavity quantum
electrodynamics, the result given by equation (23) is obtained by first evaluating the confined
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vacuum renormalized energy followed by a variation of the volume of the confining region. It
can easily be shown, however, that in terms of partition functions and free energies, Boyer’s
set-up is mathematically equivalent to the difference between two standard set-ups, one with
the distance between the plates equal to 2a and the other one with the distance between the
plates equal to a (see [7]). This can also be easily proved for the Casimir pressure at zero and
finite temperature.
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