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 Space elevators 

1. Torre de Babel  

 (Moises,  Genesis (11:1-9) 

  

 

 

2. Escada de Jacob 

 (Genesis (28:12)) 

 



 Space elevators 

 3. K.E.Tsiolkovski 

 Speculation about Earth and 

 Sky and on Vesta (1895) 

  

 4. Yuri Artsutanov (1960) 

 Komosomolskaya Pravda 

 

 5. Arthur C. Clarke  

 The fountains of Paradise 

 (tower in Sri Lanka) 

 

 



Yuri Artsutanov and Jerome Pearson 



K.E.Tsiolkovski 

35.800 km 



 

GEO:   órbita geoestacionária  
35.800 km, 



AS THE CAR CLIMBS, THE ELEVATOR TAKES ON A 1 DEGREE LEAN, DUE TO 
THE TOP OF THE ELEVATOR TRAVELING FASTER THAN THE BOTTOM AROUND 
THE EARTH (CORIOLIS FORCE). THIS DIAGRAM IS NOT TO SCALE. 

35.800 km 



VARIAÇÃO DA 
 VELOCIDADE 

COM 
 A ALTITUDE 

The velocity at the top of the 
tower is 
so great (10.93 km/s) that a 
payload released from there 
would escape the Earth without 
rocket propulsion. 







 

The Space Elevator will 
succeed 50 years after 
everyone has stopped 
laughing. 
 
-Arthur C. Clarke 



NANO TUBOS DERAM VIDA 
NOVA AO SONHO DA BABEL 
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64,000 km                   58,000 km 

 

                           380,000 km 

Lagrangian Points  

Earth‐Moon 

L5 



      LUNAR SPACE ELEVATOR 

There are two lunar-synchronous points where an elevator could 
be placed that would be stable: the libration points L1 and L2   



Anchored Lunar Satellites Compared to the Anchored Earth 
Satellite   ( Jerome Pearson) 



  TSS   1992 NASA 

  TSS-1R   1996 NASA  

  TIPS   1996 US Navy 

  YES2   2007 ESA 

  MAST   2007 JAXA 

Space missions  

Artistic representation (NASA) 

 What are tethered satellites?  



TSS-1 (1992) - NASA 

YES2 (2007) - ESA 



Tether mudando a órbita de satélite 



 Momentum-exchange tethers 
(nonconductive tethers representing passive 
propulsion).  

 They allow momentum to be transferred 
between objects in space, such as two 
spacecraft (tethers may redistribute 
momentum of  a system from one body to 
another, but overall momentum is always 
conserved). The principle is based on the 
gravity gradient force. 



Two objects, separated by a distance but 
tied together by a tether, are “pulled” apart 
by the gravity gradient force [this causes 
vertical (radial) alignment between the two 
objects]. Due to irregularities in the central 
body's gravitational field, the nearly radially 
aligned tether system actually librates, or 
oscillates, in a pendulum-like motion, about 
the system's center of  mass. This swinging 
motion may be used to raise or lower the 
orbit of  a tandem system without using any 
propellant. 



-  A bolo tether rotates end-over-end in 
the orbit plane. This system could 
propel a payload attached to one end 
into a different orbit. The bolo could 
conceivably catch a payload. 

-  A stationary tether refers to two end-
bodies connected by a tether of 
constant length. The system may be 
used to drag the lower end-body 
payload through the higher 
atmosphere (for sampling) and 
simultaneously lowering the system's 
orbit. 

- A tethered system release of an end-
body from the remaining end-body and 
tether causes a momentum gain for the 
released end-body, resulting in a higher 
orbit for the released end-body orbit and 
a lower orbit for the remaining end-body 
and tether. 
 

TIPS 



  The analytical  model for the dynamics of 

  a tether in the vicinity of collinear points  

 

  Determination of the equilibrium points 

  Lyapunov periodic orbits in the vicinity of the equilibrium 
points 

                                     Application to the Earth-Moon L2 



  Primary bodies as point masses on circular orbits around 
the CM 

  Cable length much smaller than the distance between 
the primary bodies 

  Planar motion 

  Ideal rigid cable 

   



θ,, yx θ,, yx



 System description  
  Synodic system with origin in L2 of the  RTBP 

  Equations of Euler-Lagrange  

generalized coordinates : 
 (holonomic constraints) 
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Lagrangian function  
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Expansion up to fourth order 



Equations of motion  
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Constant of motion 
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If                      RTBP  
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Left hand side  equals zero and all velocities equal zero 

Equilibrium equations  
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Equilibrium points  
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Behavior for different tether length: Earth-Moon 
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 Lyapunov periodic orbits  

  Linear stability  

  Characterisc curve the of 
Lyapunov periodic orbits 

Periodic  solutions  in the vicinity of   
equilibrium points? 



Linear stability - a system with 6 EDO(s) 
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linear stability - Jacobian matrix  
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  Jacobian matrix is a function of cable length 
only.  



Linear stability - a system with 6 EDO(s) 

y
RR

x
dt

yd ll









−Λ+Λ

−
−−= 1

ˆˆ

1 ,
23

2

,
13

1

2
θθ µµ
















 Λ
−

Λ
−−+








−Λ+Λ

−
−+=

3
2

,
2

3
1

,
1

0

,
23

2

,
13

1

2
ˆˆ

)1()ˆ(1
ˆˆ

1

RR
xX

RR
y

dt

xd
ll

ll
θθ

θθ µµ
µµ




θθ µµ
θ

θ
,

23

2

,

13

1
ˆ

1
)1(

ˆ

ˆ
2 ll

RRl

l

dt

d
Ω−Ω

−
−+′












 ′
−=



x
dt

dx
=

y
dt

dy
=

θ
θ =
dt

d

0=



Earth-Moon:     
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Earth-Moon 
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Linear Periodic Orbit 

1ª NLPO 

 NLPO 

Newton’s Method  

Method of numerical continuation  
numerical 
refinement  

 Generation of Lyapunov periodic orbits  



Numerical applications (Earth-Moon) 

Periodic orbits in the vicinity of  
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Some orbits of the Lyapunov family 

)0,0,(0 eqxP



Comparison of the Characteristic Curves 

)0,0,(0 eqxP

(initial condition) 



   Conclusions 

  Our fourth order model is consistent with the 
RTBP  

  The dynamics shows almost no variation 
with the masses 

  The tether  length is the most significative 
parammeter of the dynamics 

  The Lyapunov orbits are not translations of 
RTBP 

  The tether  describes  a Lyapunov orbit with 

    theta=0 

    The  linear coupling  space-angle are tori,  
so a future work is to continue these tori. 

 





L1 on the Earth side of the Moon is 56,000 km up from the surface, and L2 on the far 
side is 67,000 km up. In these positions, the forces of gravity and centrifugal force are 
equal, and as long as the system remained balanced (L1 and L2 are in unstable 
equilibrium along the line between Earth and Moon), it would remain stationary.Both of 
these positions are substantially farther up than the 36,000 km from Earth to 
geostationary orbit. Furthermore, the weight of the limb of the cable system extending 
down to the Moon would have to be balanced by the cable extending further up, and the 
Moon's slow rotation means the upper limb would have to be much longer than for an 
Earth-based system. To suspend a kilogram of cable or payload just above the surface of 
the Moon would require 1,000 kg of counterweight, 26,000 km beyond L1. (A smaller 
counterweight on a longer cable, e.g., 100 kg at a distance of 230,000 km — more than 
halfway to Earth — would have the same balancing effect.) Without the Earth's gravity to 
attract it, an L2 cable's lowest kilogram would require 1,000 kg of counterweight at a 
distance of 120,000 km from the Moon.The anchor point of a space elevator is normally 
considered to be at the equator. However, there are several possible cases to be made for 
locating a lunar base at one of the Moon's poles; a base on a peak of eternal light could 
take advantage of continuous solar power, for example, or small quantities of water and 
other volatiles may be trapped in permanently shaded crater bottoms. A space elevator 
could be anchored near a lunar pole, though not directly at it. A tramway could be used 
to bring the cable the rest of the way to the pole, with the Moon's low gravity allowing 
much taller support towers and wider spans between them than would be possible on 
Earth. 



  The original space elevator, as Clarke acknowledges, was first 
described by Russian engineer Yuri Artsutanov in 1960, in an article 
in Pravda called "To the Cosmos By Electric Train." Since then, it's 
apparently been independently "reinvented" at least three times: 

  (1) by a team from Scripps Institute of  Oceanography and Woods 
Hole Oceanographic Institute (1966); 

  (2) in 1969 by A.R. Collar and J.W. Flower in the Journal of  the 
British Interplanetary Society; 

  (3) and by Jerome Pearson of  the Air Force Research Laboratory at 
Wright-Patterson Air Force Base (1975). It was hinted at, though not 
fully developed (for lack of  a large enough envelope for calculations, 
he claims) by Clarke himself  in 1963 in an essay for UNESCO on 
communications satellites. 



http://www.niac.usra.edu/files/studies/final_report/
472Edwards.pdf  

http://gassend.net/spaceelevator/breaks/ 




