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Polarization: photons and spin-1/2 particles

In this chapter we build up the basic concepts of quantum mechanics using two simple
examples, following a heuristic approach which is more inductive than deductive. We
start with a familiar phenomenon, that of the polarization of light, which will allow
us to introduce the necessary mathematical formalism. We show that the description of
polarization leads naturally to the need for a two-dimensional complex vector space, and
we establish the correspondence between a polarization state and a vector in this space,
referred to as the space of polarization states. We then move on to the quantum description
of photon polarization and illustrate the construction of probability amplitudes as scalar
products in this space. The second example will be that of spin 1/2, where the space of
states is again two-dimensional. We construct the most general states of spin 1/2 using
rotational invariance. Finally, we introduce dynamics, which allows us to follow the time
evolution of a state vector.
The analogy with the polarization of light will serve as a guide to constructing the

quantum theory of photon polarization, but no such classical analog is available for
constructing the quantum theory for spin 1/2. In this case the quantum theory will be
constructed without reference to any classical theory, using an assumption about the
dimension of the space of states and symmetry principles.

3.1 The polarization of light and photon polarization

3.1.1 The polarization of an electromagnetic wave

The polarization of light or, more generally, of an electromagnetic wave, is a familiar
phenomenon related to the vector nature of the electromagnetic field. Let us consider a
plane wave of monochromatic light of frequency � propagating in the positive z direction.
The electric field �E�t� at a given point is a vector orthogonal to the direction of propa-
gation. It therefore lies in the xOy plane and has components (Ex�t��Ey�t��Ez�t� = 0}
(Fig. 3.1). The most general case is that of elliptical polarization, where the electric field
has the form

�E�t�=
{
Ex�t�= E0x cos��t−�x�

Ey�t�= E0y cos��t−�y�
� (3.1)

61



62 Polarization: photons and spin-1/2 particles

analyzer

x

Ex

Ey

θ

α
y x

y
z

polarizer

Fig. 3.1. A polarizer–analyzer ensemble.

We have not made the z dependence explicit because we are only interested in the field
in a plane z= constant. By a suitable choice of the origin of time, it is always possible
to choose �x = 0� �y = �. The intensity � of the light wave is proportional to the square
of the electric field:

� = �x+�y = k�E2
0x+E2

0y�= kE2
0� (3.2)

where k is a proportionality constant which need not be specified here. When � = 0
or �, the polarization is linear: if we take E0x = E0 cos , E0y = E0 sin  , Eq. (3.1) for
�x = �y = 0 shows that the electric field oscillates in the n̂ direction of the xOy plane,
making an angle  with the Ox axis. Such a light wave can be obtained using a linear
polarizer whose axis is parallel to n̂ .
When we are interested only in the polarization of this light wave, the relevant param-

eters are the ratios E0x/E0 = cos and E0y/E0 = sin  , where  can be chosen to lie
in the range �0���. Here E0 is a simple proportionality factor which plays no role in
the description of the polarization. We can establish a correspondence between waves
linearly polarized in the Ox and Oy directions and orthogonal unit vectors �x� and �y�
in the xOy plane forming an orthonormal basis in this plane. The most general state of
linear polarization in the n̂ direction will correspond to the vector � � in the xOy plane:

� � = cos �x�+ sin  �y�� (3.3)

which also has unit norm:


 � � = cos2  + sin2  = 1�

The fundamental reason for using a vector space to describe polarization is the super-
position principle: a polarization state can be decomposed into two (or more) other states,
or, conversely, two polarization states can be added together vectorially. To illustrate
decomposition, let us imagine that a wave polarized in the n̂ direction passes through
a second polarizer, called an analyzer, oriented in the n̂� direction of the xOy plane
making an angle � with Ox (Fig. 3.1). Only the component of the electric field in the
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n̂� direction, that is, the projection of the field on n̂�, will be transmitted. The amplitude
of the electric field will be multiplied by a factor cos� −�� and the light intensity at the
exit from the analyzer will be reduced by a factor cos2� −��. We shall use a� → ��

to denote the projection factor, which we refer to as the amplitude of the n̂ polarization
in the n̂� direction. This amplitude is just the scalar product of the vectors � � and ���:

a� → ��= 
�� � = cos� −��= n̂� · n̂ � (3.4)

The intensity at the exit of the analyzer is given by the Malus law:

� = �0�a� → ���2 = �0�
�� ��2 = �0 cos
2� −�� (3.5)

if �0 is the intensity at the exit of the polarizer. Another illustration of decomposition is
given by the apparatus of Fig. 3.2. Using a uniaxial birefringent plate perpendicular to
the direction of propagation and with optical axis lying in the xOz plane, a light beam
can be decomposed into a wave polarized in the Ox direction and a wave polarized in the
Oy direction. The wave polarized in the Ox direction propagates in the direction of the
extraordinary ray refracted at the entrance and exit of the plate, and the wave polarized
in the Oy direction follows the ordinary ray propagating in a straight line.
The addition of two polarization states can be illustrated using the apparatus of Fig. 3.3.

The two beams are recombined by a second birefringent plate, symmetrically located
relative to the first with respect to a vertical plane, before the beam passes through
the analyzer.1 In order to simplify the arguments, we shall neglect the phase difference

optical axis

birefringent plate

Dx

Dy

z

x

θ

y

E

O

O

Fig. 3.2. Decomposition of the polarization by a birefringent plate. The ordinary ray O is polarized
horizontally, and the extraordinary ray E is polarized vertically.

1 This recombination of amplitudes is possible because two beams from the same source are coherent. Of course, it would be
impossible to add the amplitudes of two polarized beams from different sources; the situation is identical to that in the case
of interference.



64 Polarization: photons and spin-1/2 particles

analyzer

xθ

y

x

y

E

O

polarizer

optical
axes

z
α

Fig. 3.3. Decomposition and recombination of polarizations using birefringent plates.

originating from the difference between the ordinary and extraordinary indices in the
birefringent plates (equivalently, we can imagine that this difference is cancelled by an
intermediate birefringent plate which is oriented appropriately; see Exercise 3.3.1). Under
these conditions the light wave at the exit of the second birefringent plate is polarized in
the n̂ direction. The recombination of the two x and y beams gives the initial light beam
polarized in the n̂ direction, and the intensity at the exit of the analyzer is reduced as
before by a factor cos2� −��.
If we limit ourselves to linear polarization states, we can describe any polarization state

as a real unit vector in the xOy plane, in which a possible orthonormal basis is constructed
from the vectors �x� and �y�. However, if we want to describe an arbitrary polarization,
we need to introduce a two-dimensional complex vector space � . This space will be the
vector space of the polarization states. Let us return to the general case (3.1), introducing
complex notation �� = ��x� �y� for the wave amplitudes:

�x = E0xe
i�x � �y = E0ye

i�y � (3.6)

which allows us to write (3.1) in the form

Ex�t�= E0x cos��t−�x�= Re
(
E0xe

i�xe−i�t
)= Re

(
�xe

−i�t
)
�

Ey�t�= E0y cos��t−�y�= Re
(
E0ye

i�ye−i�t
)= Re

(
�ye

−i�t
)
�

(3.7)

We have already noted that owing to the arbitrariness of the time origin, only the
relative phase � = ��y − �x� is physically relevant and we can multiply �x and �y by
a common phase factor exp�i�� without any physical consequences. For example, it is
always possible to choose �x = 0. The light intensity is given by (3.2):

� = k���x�2+��y�2�= k� ���2 = kE2
0 � (3.8)

An important special case of (3.7) is that of circular polarization, where E0x = E0y =
E0/

√
2 and �y = ±�/2 (we have conventionally chosen �x = 0). If �y = +�/2, the tip
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of the electric field vector traces a circle in the xOy plane in the counterclockwise sense.
The components Ex�t� and Ey�t� are given by

Ex�t�= Re
(
E0√
2
e−i�t

)
= E0√

2
cos�t�

Ey�t�= Re
(
E0√
2
e−i�tei�/2

)
= E0√

2
cos��t−�/2�= E0√

2
sin�t�

(3.9)

An observer at whom the light wave arrives sees the tip of the electric field vector
tracing a circle of radius E0/

√
2 counterclockwise in the xOy plane. The corresponding

polarization is termed right-handed circular polarization.2 When �y =−�/2, we obtain
left-handed circular polarization – the circle is traced in the clockwise sense:

Ex�t�= Re
(
E0√
2
e−i�t

)
= E0√

2
cos�t�

Ey�t�= Re
(
E0√
2
e−i�te−i�/2

)
= E0√

2
cos��t+�/2�=− E0√

2
sin�t�

(3.10)

These right- and left-handed circular polarization states are obtained experimentally start-
ing from linear polarization at an angle of 45o to the axes and then introducing a phase
shift ±�/2 of the field in the Ox or Oy direction by means of a quarter-wave plate.
In complex notation the fields �x and �y are written as

�x =
1√
2
E0� �y =

1√
2
E0e

±i�/2 = ±i√
2
E0�

where the + sign corresponds to right-handed circular polarization and the − to left-
handed. The proportionality factor E0 common to �x and �y defines the intensity of the
light wave and plays no role in describing the polarization, which is characterized by the
normalized vectors

�R� = − 1√
2
��x�+ i�y��� �L� = 1√

2
��x�− i�y�� � (3.11)

The overall minus sign in the definition of �R� has been introduced to be consistent with
the conventions of Chapter 10. Equation (3.11) shows that the mathematical description
of polarization leads naturally to the use of unit vectors in a complex two-dimensional
vector space � , in which the vectors �x� and �y� form one possible orthonormal basis.

2 See Fig. 10.8. Our definition of right- and left-handed circular polarization is the one used in elementary particle physics.
With this definition, right- (left-) handed circular polarization corresponds to positive (negative) helicity, that is, to projection
of the photon spin on the direction of propagation equal to +� (−�). However, this definition is not universal; optical
physicists often use the opposite, but, as one of them has remarked (E. Hecht, Optics, New York: Addison-Wesley (1987),
Chapter 8): “This choice of terminology is admittedly a bit awkward. Yet its use in optics is fairly common, even though it
is completely antithetic to the more reasonable convention adopted in elementary particle physics.”
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Above we have established the correspondence between linear polarization in the n̂ 

direction and the unit vector � � of � , as well as the correspondence between the two
circular polarizations and the two vectors (3.11) of � . We are now going to generalize
this correspondence by constructing the polarization corresponding to the most general
normalized vector �%� of � :3

�%� = 
�x�+��y�� �
�2+���2 = 1� (3.12)

It is always possible to choose 
 to be real (in Exercise 3.3.2 we show that the physics
is unaffected if 
 is complex). The numbers 
 and � can then be parametrized by two
angles  and ,:


= cos � �= sin  ei,�

We shall imagine a device containing two birefringent plates and a linear polarizer, on
which an electromagnetic wave (3.7) is incident. This device will be called a �
��)
polarizer.

• The first birefringent plate changes the phase of �y by −, while leaving �x unchanged:

�x → ��1�
x = �x� �y → ��1�

y = �ye
−i,�

• The linear polarizer projects on the n̂ direction:

���1� → ���2� = (��1�
x cos +��1�

y sin  
)
n̂ 

= (�x cos +�y sin  e
−i,
)
n̂ �

• The second birefringent plate leaves ��2�
x unchanged and shifts the phase of ��2�

y by ,:

��2�
x → �′x = ��2�

x � ��2�
y → �′y = ��2�

y ei,�

The combination of the three operations is represented by the transformation �� → ��′
which can be written in terms of components:

�′x = �x cos
2  +�y sin  cos e

−i, = �
�2�x+
�∗�y�

�′y = �x sin  cos e
i,+�y sin

2  = 
∗��x+���2�y�
(3.13)

The operation (3.13) amounts to projection on �%�. In fact, if we choose to write the
vectors �x� and �y� as column vectors

�x� =
(
1
0

)
� �y� =

(
0
1

)
� (3.14)

then the projector 
%


% = �%�
%� = (
�x�+��y�)(
∗
x�+�∗
y�)
3 We shall use upper-case letters �%� or �-� for generic vectors of � of the form (3.12) or (3.16), to avoid any confusion
with an angle, as for � � or ���.
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is represented by the matrix


% =
⎛
⎝ �
�2 
�∗


∗� ���2

⎞
⎠ � (3.15)

We can put the incident field �� (3.7) in correspondence with a (non-normalized) vector
��� of � with the complex components �x and �y:

��� = �x�x�+�y�y��
Using ��� we can define a vector �-� normalized to unity by ��� = E0�-�:

�-� = ��x�+�y�� ���2+��2 = 1� (3.16)

where

� = �x

E0

�  = �y

E0

�

The normalized vector �-� which describes the polarization of the wave (3.7) is called
the Jones vector. According to (3.13) and (3.15), the electric field at the exit of the �
���
polarizer will be

��′� = 
%��� = E0
%�-� = E0�%�
%�-�� (3.17)

Now let us generalize everything we have obtained for the linear polarizer to the �
���

polarizer. The latter projects the polarization state �-� onto �%� with amplitude equal to

%�-�:

a�- →%�= 
%�-�� (3.18)

At the exit of the polarizer the intensity is reduced by a factor �a�- →%��2 = �
%�-��2.
If the polarization state is described by the unit vector �%� (3.12), then the transmission
through the (
��� polarizer is 100%. On the other hand, the polarization state

�%⊥� = −�∗�x�+
∗�y� (3.19)

is completely stopped by the �
��� polarizer. The polarization state (3.16) is in general
an elliptic polarization. It is easy to determine the characteristics of the corresponding
ellipse and the direction in which it is traced (Exercise 3.3.2).
The states �%� and �%⊥� form an orthonormal basis of � obtained from the (�x�� �y�)

basis by a unitary transformation U :

U =
⎛
⎝ 
 �

−�∗ 
∗

⎞
⎠ �

In summary, we have shown that any polarization state can be put into correspondence
with a normalized vector �%� of a two-dimensional complex space � . The vectors �%�
and exp�i���%� represent the same polarization state. Stated more precisely, a polarization
state can be put into correspondence with a vector up to a phase.
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3.1.2 The photon polarization

Now we shall show that the mathematical formalism used above to describe the polar-
ization of a light wave can be carried over without modification to the description of the
polarization of a photon. However, the fact that the mathematical formalism is identical
in the two cases should not obscure the fact that the physical interpretation is radically
modified. We shall return to the experiment of Fig. 3.2 and reduce the light intensity
such that individual photons are registered by the photomultipliers Dx and Dy, which
respectively detect photons polarized in the Ox and Oy directions. We then observe the
following:

• only one of the two photomultipliers is triggered by a photon incident on the plate. Like the
neutrons of Chapter 1, the photons arrive in lumps: they are never split.

• the probability px (py) of Dx (Dy) being triggered by a photon incident on the plate is px = cos2  
(py = sin2  ).

This result must hold true if we want to recover classical optics in the limit where the
number N of photons is large. In fact, if Nx and Ny are the numbers of photons detected
by Dx and Dy, we must have

px = lim
N→�

Nx

N
� py = lim

N→�
Ny

N

and �x ∝ Nx = N cos2  , �y ∝ Ny = N sin2  in the limit N →�. However, the fate of an
individual photon cannot be predicted. We can only know its probability of detection by
Dx or Dy. The need to resort to probabilities is an intrinsic feature of quantum physics,
whereas in classical physics resorting to probabilities is only a way to take into account
the complexity of a phenomenon whose details we cannot (or do not want to) know. For
example, when flipping a coin, complete knowledge of the initial conditions under which
the coin is thrown and inclusion of the air resistance, the state of the ground on which
the coin lands, etc. permit us in principle to predict the result. Some physicists4 have
suggested that the probabilistic nature of quantum mechanics has an analogous origin:
if we had access to additional variables which at present we do not know, the so-called
hidden variables, we would be able to predict with certainty the fate of each individual
photon. This hidden variable hypothesis has some utility in discussions of the foundations
of quantum physics. Nevertheless, in Chapter 6 we shall see that, given very plausible
hypotheses, such variables are excluded by experiment.
However, probabilities alone provide only a very incomplete description of the pho-

ton polarization. A complete description requires also the introduction of probability
amplitudes. Probability amplitudes, which we denote a (the difference between the wave
amplitudes of the preceding subsection and probability amplitudes is emphasized by using
different notation: a instead of a), are complex numbers, and probabilities correspond
to their squared modulus �a�2. To make manifest the incomplete nature of probabilities

4 Including de Broglie and Bohm.
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alone, let us again consider the apparatus of Fig. 3.3. Between the two plates a photon
follows either the trajectory of an extraordinary ray polarized in the Ox direction, called
an x trajectory, or the trajectory of an ordinary ray polarized in the Oy direction, called a y
trajectory. According to purely probabilistic reasoning, a photon following an x trajectory
has probability cos2  cos2 � of being transmitted by the analyzer, and a photon following
a y trajectory has the corresponding probability sin2 sin2�. The total probability for a
photon to be transmitted by the analyzer is therefore

ptot = cos2  cos2 �+ sin2  sin2 �� (3.20)

This is not what is found from experiment, which confirms the result obtained earlier
using wave arguments:

ptot = cos2� −���

A correct reasoning must be based on probability amplitudes, just as before we used
wave amplitudes. Probability amplitudes obey the same rules as wave amplitudes, which
guarantees that the results of optics are reproduced when the number of photons N →�.
The probability amplitude for a photon linearly polarized in the n̂ direction to be polarized
in the n̂� direction is given by (3.4): a� → �� = cos� −�� = n̂ · n̂�. We obtain the
following table of probability amplitudes for the experiment of Fig. 3.3:

a� → x� = cos � a�x→ ��= cos��

a� → y� = sin  � a�y→ ��= sin��

This example provides an illustration of the rules governing the combination of probability
amplitudes. The probability amplitude ax for an incident photon following an x trajectory
to be transmitted by the analyzer is

ax = a� → x�a�x→ ��= cos cos��

This expression suggests the factorization rule for amplitudes: ax is the product of
the amplitudes a� → x� and a�x → ��. This factorization rule guarantees that the
corresponding rule for the probabilities holds. We also have

ay = a� → y�a�y→ ��= sin  sin��

If the experimental setup does not allow us to know which trajectory a photon has
followed, the amplitudes must be added. The total probability amplitude for a photon to
be transmitted by the analyzer is then

atot = ax+ay = cos cos�+ sin  sin�= cos� −��� (3.21)

and the corresponding probability is cos2� −��, in agreement with the result (3.5)
of classical optics. If there is a way to distinguish between the two trajectories, the
interference is destroyed and the probabilities must be added as in (3.20).
Since the rules for combining probability amplitudes are the same as those for wave

amplitudes, these rules will apply if the polarization state of a photon is described by a
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normalized vector in a two-dimensional vector space � , called the space of states. In the
present case this is the space of polarization states. When a photon is linearly polarized
in the Ox (Oy) direction, we can put this polarization state in correspondence with a
vector �x� (�y�) of this space. Such a polarization state is obtained by allowing a photon
to pass through a linear polarizer oriented in the Ox (Oy) direction. The probability that
a photon polarized in the Ox direction will be transmitted by an analyzer oriented in the
Oy direction is zero: the probability amplitude a�x→ y�= 0. Conversely, the probability
that a photon polarized in the Ox or Oy direction will be transmitted by an analyzer
oriented in the same direction is equal to unity, and so

�a�x→ x�� = �a�y→ y�� = 1� a�x→ y�= a�y→ x�= 0�

These relations are satisfied if �x� and �y� form an orthonormal basis of � and if we
identify the probability amplitudes as scalar products:

a�x→ x�= 
x�x� = 1� a�y→ y�= 
y�y� = 1� a�y→ x�= 
x�y� = 0� (3.22)

The most general linear polarization state is the state in which the polarization makes an
angle  with Ox. This state will be represented by the vector

� � = cos �x�+ sin  �y�� (3.23)

Equations (3.22) and (3.23) ensure that the probability amplitudes listed above are cor-
rectly given by the scalar products, for example,

a� → x�= 
x� � = cos �

or, in general, if ��� is a state of linear polarization,

a� → ��= 
�� � = cos� −���

The most general polarization state will be described by a normalized vector called a
state vector:

�%� = 
�x�+��y�� �
�2+���2 = 1�

As in the wave case, the vectors �%� and exp�i���%� represent the same physical state:
a physical state is represented by a vector up to a phase in the space of states. The
probability amplitude for finding a polarization state �-� in �%� will be given by the
scalar product 
%�-�, and the projection onto a given polarization state will be realized
by the �
��� polarizer described in the preceding subsection. In summary, we have used
a specific example, that of the polarization of a photon, to illustrate the construction of
the Hilbert space of states.
The photon polarization along some (complex) direction is an example of a quantum

physical property. The interpretation of a quantum physical property differs radically
from that of a classical physical property. We shall illustrate this by examining the photon
polarization. At first we limit ourselves to the simplest case, that of a linear polarization
state. Using a linear polarizer oriented in the Ox direction, we prepare an ensemble of
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photons all in the state �x�. The photons arrive one by one at the polarizer, and all the
photons which are transmitted by the polarizer are in the state �x�. This is the stage
of preparation of the quantum system, where one only keeps the photons which have
passed through the polarizer aligned in the Ox direction. The next stage, the test stage,
consists of testing this polarization by allowing the photons to pass through a linear
analyzer. If the analyzer is parallel to Ox the photons are transmitted with unit probability
and if it is parallel to Oy they are transmitted with zero probability. In both cases the
result of the test can be predicted with certainty. The physical property “polarization of
a photon prepared in the state �x�” takes well-defined values if the basis (�x�� �y�) is
chosen for the test. On the other hand, if we use analyzers oriented in the direction n̂ 

corresponding to the state � � (3.23) and in the perpendicular direction n̂ ⊥ corresponding
to the state

� ⊥� = − sin  �x�+ cos �y�� (3.24)

we can predict only the transmission probability �
 �x��2 = cos2 in the first case and
�
 ⊥�x��2 = sin2  in the second. The physical property “polarization of the photon in
the state �x�” has no well-defined value in the basis (� �� � ⊥�). In other words, the
physical property “polarization” is associated with a given basis, and the two bases
(�x�� �y�) and (� �� � ⊥�) are termed incompatible (except when  = 0 and  = �/2).
Complementary bases are a special case of incompatible ones: in a Hilbert space of
dimension N , two bases (�m�) and (���) are termed complementary if �
m����2 = 1/N
for all m and �.
The preceding discussion should be made more precise in two respects. First, it is

clearly impossible to test the polarization of an isolated photon. The polarization test
requires that we are provided with a number N � 1 of photons prepared under identical
conditions. Let us then suppose that N photons have been prepared in a certain polarization
state and that they are tested by a linear analyzer oriented in the Ox direction. If we
find – within the experimental accuracy of the apparatus – that the photons pass through
the analyzer with a probability of 100%, we can deduce that the photons have been
prepared in the state �x�. The observation of a single photon obviously does not allow us
to arrive at this conclusion, unless we know beforehand in which basis it was prepared.
The second point is that even if the photons are transmitted with a probability cos2 , we
cannot deduce that they have been prepared in the linear polarization state (3.23). In fact,
we will observe the same transmission probability if the photons have been prepared in
an elliptic polarization state (3.12) with


= cos ei�x � �= sin  ei�y �

Only a test whose results have probability 0 or 1 allows the photon polarization state to
be determined unambiguously with one orientation of the analyzer. Otherwise, a second
orientation will be necessary to determine the phases.
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In the representation (3.14) of the basis vectors of � , the projectors 
x and 
y onto
the states �x� and �y� are represented by matrices


x =
(

1 0
0 0

)
� 
y =

(
0 0
0 1

)

which commute: �
x�
y�= 0. The two operators are compatible according to the defini-
tion of Section 2.3.3. The projectors 
 and 
 ⊥ can be calculated directly from (3.15):


 =
(

cos2 sin  cos 
sin  cos sin2 

)
� 
 ⊥ =

(
sin2 − sin  cos 

− sin  cos cos2 

)
�

They commute with each other, but not with either 
x or 
y: 
x and 
 , for example, are
incompatible. The commutation (or noncommutation) of operators is the mathematical
translation of the compatibility (or incompatibility) of physical properties.
As another choice of basis we can use the right- and left-handed circular polarization

states �R� and �L� of (3.11). The basis (�R�� �L�) is incompatible with any basis con-
structed using linear polarization states, and in fact complementary to any such basis. The
projectors 
R and 
L onto these circular polarization states are


R =
1
2

(
1 −i
i 1

)
� 
L =

1
2

(
1 i
−i 1

)
� (3.25)

We can use 
R and 
L to construct the remarkable Hermitian operator .z:

.z = 
R−
L =
(

0 −i
i 0

)
� (3.26)

This operator has the states �R� and �L� as its eigenvectors, and their respective eigen-
values are +1 and −1:

.z�R� = �R�� .z�L� = −�L�� (3.27)

This result suggests that the Hermitian operator .z with eigenvectors �R� and �L�
is associated with the physical property called “circular polarization.” We shall see
in Chapter 10 that �.z = Jz is the operator representing the physical property called
“z component of the photon angular momentum (or spin).” We also observe that
exp�−i .z� is an operator which performs rotations by an angle  about the Oz axis, as
can be seen from a simple calculation (Exercise 3.3.3)

exp�−i .z�=
(

cos − sin  
sin  cos 

)
� (3.28)

and exp�−i .z� transforms the state �x� into the state � � and �y� into � ⊥�:
exp�−i .z��x� = � �� exp�−i .z��y� = � ⊥�� (3.29)
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3.1.3 Quantum cryptography

Quantum cryptography is a recent invention based on the incompatibility of two different
bases of linear polarization states. Ordinary cryptography makes use of an encryption key
known only to the transmitter and receiver. This is called secret-key cryptography. It is
in principle very secure,5 but it is necessary that the transmitter and receiver be able to
exchange the key without its being intercepted by a spy. The key must be changed often,
because a set of messages encoded using the same key can reveal regularities which
permit decipherment by a third party. The process of transmitting a secret key is risky, and
for this reason it is preferable to use systems based on a different principle, the so-called
public-key systems, where the key is made public, for example via the Internet. A public-
key system currently in use is based on the difficulty of factoring a very large number
N into primes,6 whereas the reverse operation is straightforward: without a calculator
one can obtain 137× 53 = 7261 in a few seconds, but given 7261 it would take some
time to factor it into primes. The number of instructions needed for a computer using
the best modern algorithms to factor a number N into primes grows with N roughly as
exp��lnN�1/3�.7 In a public-key system, the receiver, conventionally named Bob, publicly
sends to the transmitter, conventionally named Alice, a very large number N = pq which
is the product of two primes p and q, as well a number c having no common factor with
�p−1��q−1�. Knowledge of N and c is sufficient for Alice to encrypt the message, but
decipherment requires knowing the numbers p and q. Of course, a spy, conventionally
named Eve, possessing a sufficiently powerful computer and enough time can manage
to crack the code, but in general one can count on keeping the contents of the message
secret for a limited period of time. However, it is not impossible that eventually very
powerful algorithms will be found for factoring a number into primes, and, moreover, if
quantum computers (Section 6.4.2) ever see the light of day, they will push the limits
of factorization very far. Fortunately, thanks to quantum mechanics we are nearly at the
point of being able to counteract the efforts of spies.
“Quantum cryptography” is a catchy phrase, but somewhat inaccurate. The point is not

that a message is encrypted using quantum physics, but rather that quantum physics is
used to ensure that the key has been transmitted securely: a more accurate terminology is
thus “quantum key distribution” (QKD). A message, encrypted or not, can be transmitted
using the two orthogonal linear polarization states of a photon, for example, �x� and �y�.
We can adopt the convention of assigning the value 1 to the polarization �x� and 0 to the
polarization �y�; then each photon transports a bit of information. The entire message,
encrypted or not, can be written in binary code, that is, as a series of ones and zeros,
and the message 1001110 can be encoded by Alice using the photon sequence xyyxxxy

and then sent to Bob via, for example, an optical fiber. Using a birefringent plate, Bob

5 An absolutely secure encryption was discovered by Vernam in 1917. However, absolute security requires that the key be as
long as the message and that it be used only a single time!

6 Called RSA encryption, discovered by Rivest, Shamir, and Adleman in 1977.
7 At present the best factorization algorithm requires a number of operations ∼ exp�1�9�lnN�1/3�ln lnN�2/3�. One cannot hope
to factor numbers with more than 180 figures (∼1020 instructions) in a reasonable amount of time.
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will separate the photons of vertical and horizontal polarization as in Fig. 3.2, and two
detectors located behind the plate will permit him to decide if a photon was horizontally
or vertically polarized. In this way he can reconstruct the message. If this were an ordinary
message, there would of course be much simpler and more efficient methods of sending
it! At this point, let us just note that if Eve eavesdrops on the fiber, detects the photons
and their polarization, and then sends to Bob other photons with the same polarization
as the ones sent by Alice, Bob is none the wiser. The situation would be the same for
any device functioning in a classical manner, that is, any device that does not use the
superposition principle: if the spy takes sufficient precautions, the spying is undetectable,
because she can send a signal that is arbitrarily close to the original one.
This is where quantum mechanics and the superposition principle come to the aid of

Alice and Bob, allowing them to be sure that their message has not been intercepted. The
message need not be long (the method of transmission via polarization is not very effi-
cient). The idea in general is to transmit the key permiting encryption of a later message,
a key which can be replaced when necessary. Alice sends Bob four types of photon:
photons polarized along Ox (�) and Oy (↔) as before, and photons polarized along axes
rotated by ±45o, that is, Ox′ ( � ) and Oy′ ( �), respectively corresponding to bits 1 and 0.
Again Bob analyzes the photons sent by Alice, now using analyzers oriented in four
directions, vertical/horizontal and ±45o. One possibility is to use a birefringent crystal
randomly oriented vertically or at 45o from the vertical and to detect the photons leaving
this crystal as in Fig. 3.3. However, instead of rotating the crystal+detector ensemble, it
is easier to use a Pockels cell, which allows a given polarization to be transformed into
one of arbitrary orientation while keeping the crystal+detector ensemble fixed (Fig. 3.4).
Bob records 1 if the photon has polarization � or � , and 0 if it has polarization↔ or �.
After recording a sufficient number of photons, Bob announces publicly the analyzer
sequence he has used, but not his results. Alice compares her polarizer sequence to that
of Bob and also publicly gives him the list of polarizers compatible with his analyzers.
The bits corresponding to incompatible analyzers and polarizers are rejected (−), and,
for the other bits, Alice and Bob are certain that their values are the same. It is these
bits which will serve to construct the key, and they are known only to Bob and Alice,
because an outsider knows only the list of orientations and not the results. An example
of photon exchanges between Alice and Bob is given in Fig. 3.5.

Detector

P P

laser
Alice Bob(a) (b)

Attenuator

Fig. 3.4. The BB84 protocol. An attenuted laser beam allows Alice to send individual photons.
A birefringent crystal selects a given linear polarization, which can be rotated thanks to a Pockels
cell P. The photons are polarized, either vertically/horizontally (a), or to ±45o (b).
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Fig. 3.5. Quantum cryptography: transmission of polarized photons between Bob and Alice.

The only thing left is to ensure that the message has not been intercepted and that the
key it contains can be used without risk. Alice and Bob randomly choose a subset of
their key and compare it publicly. If Eve has intercepted the photons, this will result in a
reduction of the correlation between the values of their bits. Suppose, for example, that
Alice sends a photon polarized in the Ox direction. If Eve intercepts it using a polarizer
oriented in the Ox′ direction, and if the photon is transmitted by her analyzer, she does
not know that this photon was initially polarized along the Ox direction, and so she
resends Bob a photon polarized in the Ox′ direction, and in 50% of cases Bob will not
obtain the right result. Since Eve has one chance in two of orienting her analyzer in the
right direction, Alice and Bob will register a difference in 25% of cases and conclude
that the message has been intercepted. The use of two complementary bases maximizes
the security of the BB84 protocol. Of course, this discussion is greatly simplified. It does
not take into account the possibilities of errors which must be corrected, and moreover it
is based on recording impacts of isolated photons, while in practice one sends packets of
coherent states with a small (
n� ∼ 0�1) average number of photons by using an attenuated
laser beam.8 Nevertheless, the method is correct in principle, and, to this day, two devices
capable of realizing transmissions over several tens of kilometers are available on the
market.

3.2 Spin 1/2

3.2.1 Angular momentum and magnetic moment in classical physics

Our second example of an elementary quantum system will be that of spin 1/2. Since for
such a system there is no classical wave limit as there is in the case of the photon, our
classical discussion will be much shorter than that of the preceding section. We consider
a particle of mass m and charge q describing a closed orbit in the field of a central
force (Fig. 3.6). We denote the position and momentum of this particle as �r�t� and �p�t�.

8 In the case of the transmission of isolated photons, the theorem of quantum cloning (Section 6.4.2) guarantees that it is
impossible for Eve to fool Bob. However, Eve can slightly reduce her error rate by using a more sophisticated method: see
Exercise 15.5.3.




