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Delayed-Choice Experiments

A.J. Leggett

The phenomenon of � “wave-particle duality” is at the heart of quantum mechanics,
indeed has been described as “the one real mystery” of the subject. If we consider
the standard Young’s slits setup shown in Fig. 1, we may imagine for definiteness
that the experiment is done with electrons (� Double-slit Experiment), then in the
absence of “inspection” the probability of arrival of an electron on the final screen

Fig. 1 The standard Young’s slit setup. We may or may not choose to ‘inspect’ whether a given
electron passes through slit B or slit C; the brackets indicate the optionality of the observation
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Fig. 2 An experiment illustrating “wave-particle duality” for photons. The brackets around the
screen indicate that it may be either left in place (to indicate the “wave” aspect) or removed (to
indicate the “particle” aspect)

shows the usual interference pattern – the electron appears to behave as a wave. If
on the other hand we arrange to inspect which path is followed (e.g. by shining light
on the intermediate slits as in the Heisenberg “gamma ray microscope” thought ex-
periment � Heisenberg microscope; which-way experiments), then the electron is
always found, like a classical particle, to take one route or the other, and under these
conditions no interference occurs at the final screen. If we replace the � electrons
with photons (� light quantum), we expect a similar duality to manifest itself; how-
ever, in this case, since it is very difficult to detect a photon without destroying it,
it is more convenient to try to display the “particle” aspect by removing the final
screen and replacing it by a pair of detectors as indicated in Fig. 2; again we will
find that one detector or the other clicks, never both.

If D1 clicks we can infer that the photon in question came through slit C, if
D2 clicks that it came through B. As is well known, Bohr interpreted experiments of
this type to indicate that the very nature (“wave” or “particle”) of elementary objects
such as electrons or photons depends on the arrangement of the macroscopic exper-
imental apparatus used to examine them; the arrangements needed to see wavelike
behavior on the one hand and particle-like behavior on the other are always mu-
tually exclusive (“complementarity”). This is particularly obvious in the example
of the photon, and for definiteness I will from now on restrict myself to this case,
although an entirely parallel discussion could be given for the case of an electron.

(See Consistent histories, Ignorance Interpretation, Ithaca Interpretation, Many
Worlds Interpretation, Modal Interpretation, Orthodox Interpretation, Transactional
Interpretation).

Is it necessary that the photon should as it were know in advance of entering the
apparatus whether the latter has been set up in the “wave” configuration (Fig. 2) with
the screen S in place or the “particle” one (S removed)? This question was already
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raised by implication [1] within a few years of the birth of quantum mechanics,
and in 1978 John Archibald Wheeler (1911–2008) [2] pointed out that it can be
answered, at least in principle, by an experiment in which we leave the decision as
to which configuration to use until after the � wave packet representing the photon
is well within the apparatus (let us say to the right of point X in Fig. 1). Such an
experiment is called a “delayed-choice” experiment, and several have been done
over the last 30 years, not only on photons but also on hydrogen atoms � Bohr’s
atomic model and neutrons; without exception they have indicated that it does not
matter whether the choice of configuration is made well in advance or only at the
“last moment”, the counting statistics are quite independent of this.

In the case of photons, if the dimensions of the apparatus are of the order of 3 m
(a fairly typical value), the transit time is about 10 ns, and it is therefore essential, in
conducting a meaningful delayed-choice experiment, that the time needed to make
the “choice” should be substantially smaller than this. (For atoms and neutrons the
requirement is somewhat less stringent). This obviously rules out the possibility of
physically inserting or removing a screen as in Fig. 2; however, it turns out that one
can get around this difficulty by exploiting the polarization degree of freedom. (For
a different technique which does not rely on this, see below). The basic idea is to
correlate (or decline to correlate) the path taken by the photon with its polarization,
a choice which can be realized over a few nanoseconds with the help of a device
such as a Pockels cell (which can rotate the plane of polarization by 90◦).

A possible schematic realization is shown in Fig. 3: The photons emitted by the
source are polarized (for example) in the plane of the paper, and in the absence
of the Pockels cell (or if it is in place but not activated) this polarization is main-
tained throughout the experiment for both beams, so that they interfere at BS2 with a
relative phase which is controlled by the phase shifter. Thus, under these conditions
the output of the detector D1 (for example) is a periodic function of the phase differ-
ence introduced by the shifter (“wave” behavior). If on the other hand the Pockels
cell is activated, the polarization of a photon in the lower beam is rotated out of
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Fig. 3 Schematic realization of a polarization-mediated delayed-choice experiment. The notation
to the right of the Pockels cell indicates that the polarization may, depending on our choice, be
either in-plane or out-of-plane
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the plane of the paper, so is perpendicular to that of the upper beam; the path taken
by a given photon is now effectively “labelled” by its polarization. Under these
conditions there can be no interference at BS2 (which we assume is polarization-
insensitive), and the output of detector D1 is exactly the sum of what it would be
for each of the two beams separately; since for each beam alone the output is inde-
pendent of the position of the phase shifter, the total output of D1 when the Pockels
cell is activated is similarly insensitive to the latter (“particle” behavior). The cru-
cial point is that the cell can be activated after the incoming photon wave packet has
split at BS1.

Over the last twenty years a number of experiments along these general lines
have been done; the one closest to Wheeler’s original proposal is probably that of
ref. [3], which uses a setup similar though not identical1 to that of Fig. 3. In this
experiment the length of the interferometer was 48 m, and the choice as to whether
or not to activate the switching cell was made by a quantum random number gen-
erator (QRNG) close to the far end; with this geometry the photon enters the future
light cone of the random choice event long after it has passed the initial beam split-
ter. The use of the QRNG is designed to ensure that the photon has no way of
“knowing” the choice ahead of time. The results are clear-cut: If one selects those
photons for which the “wave” configuration was realized and plots the dependence
of the output of one of the detectors on the phase shift between the two beams,
one finds a well-defined sinusoidal pattern with visibility of 94%. If on the other
hand one selects those photons which experienced the “particle” configuration, the
corresponding plot is flat within experimental error.

An interesting variant of the “delayed-choice” experiment was reported in
ref. [4]. The schematic setup is shown in Fig. 4: the “source” is prepared in such a
way that there are nonzero mutually coherent amplitudes for a pair of photons to be
emitted back-to-back by either of two regions A and B. Photon no.1 is registered by
the screen S long before photon no.2 hits BS1 or BS2. The point of this arrangement
is that any photon detected by D3 (D4) could only have come from source A(B);
on the other hand, a photon arriving in D1 or D2 could have come from either
source. Under these conditions, if we select only those photons 1 whose partners
2 were detected in (say) D4 (let’s call this the “D4-correlated subensemble” of
photons 1), we find that the distribution on the screen S is flat; on the other hand,
if we select only those whose partners were detected in (say) D1 (“D1-correlated”
subensemble), we obtain a well-defined fringe pattern (with a complementary pat-
tern for those whose partners were detected in D2). At first sight this is puzzling,
since the detection of photon 1 on screen S took place well before the corresponding
photon 2 “knew” whether it would be transmitted or reflected by BS1/2 and thus
whether it will be detected by D3/D4 or by D1/D2.

In fact, there is no real paradox here (or in any of the other delayed-choice ex-
periments); a consistent application of the quantum measurement axioms predicts

1 Note in particular that in contrast to the setup of Fig. 3, in ref. [4] the activation of the electro-
optical cell corresponds to the “wave” configuration and its non-activation to the “particle”
configuration.
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Fig. 4 The experimental arrangement of Kim et al. [4]

precisely the experimentally observed results. In particular, let us consider a case in
which photon no.1 is detected at a point where the pattern corresponding to (say) the
D1-correlated subensemble has a node. When we say that the photon is “detected”,
we imply that it has induced a (quasi-) macroscopic event and thus satisfied what
is usually considered the criterion for having undergone a “measurement”. If at this
point we apply the standard � projection postulate to the two-photon system, we
find that following the projection the � wave function of photon 2 is automatically
such that its amplitude to arrive in D1 is zero, so everything is consistent. What the
“delayed-choice” experiments really illustrate, in a spectacular way, is the pitfalls
of applying the projection postulate at too early a stage in the game, while nothing
has been registered at the macroscopic level and there is still a possibility of mutual
interference of the possible alternatives.2
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Density Matrix

Leslie Ballentine

A matrix representation of the � state operator. So named because in the posi-
tion basis its diagonal elements are equal to the position probability density. This
name is older than the modern term state operator, and is still frequently used in
its place, especially in many-electron theory and � quantum chemistry. The name
density matrix is not entirely accurate, since in the position basis it is not really
a matrix, but rather a function of two continuous variables. If a discrete basis is
chosen (such as the spin basis), then it becomes a genuine matrix, but its diagonal
elements are probabilities rather than densities. � States, pure and mixed, and their
representation.

Density Operator

Werner Stulpe

Density operator, an operator used to describe (mixed) quantum states. A density
operator [1–6], also called statistical operator or – somehow misleading – density
matrix, is a positive trace-class � operator ρ of trace 1 acting in some separable
complex � Hilbert space H; i.e., ρ is a linear operator defined on H with values in
H that satisfies ρ = ρ∗, 〈φ|ρφ〉 � 0 for all φ ∈ H, and tr ρ = ∑i〈φi |ρφi〉 = 1,
φ1, φ2, . . . being a complete orthonormal system in H. In particular, ρ is a com-
pact self-adjoint � operator; in consequence, a density operator has the spectral
decomposition ρ = ∑

i λiPχi (� self-adjoint operator) where λ1, λ2, . . . are the
nonzero eigenvalues of ρ, counted according to their multiplicity and arranged
according to λ1 � λ2 � . . . > 0,

∑
i λi = 1, χ1, χ2, . . . is an orthonormal system




