
Copyright © 2002 by David H. McIntyre

Spin and

Quantum Measurement

David H. McIntyre
Oregon State University

PH 425 Paradigm 5
19 December 2002



1

Chapter 1 STERN-GERLACH EXPERIMENTS
1.1Introduction
1.2Stern-Gerlach experiment

1.2.1 Experiment 1
1.2.2 Experiment 2
1.2.3 Experiment 3
1.2.4 Experiment 4

1.3Quantum State Vectors
1.3.1 Analysis of Experiment 1
1.3.2 Analysis of Experiment 2
1.3.3 Superposition states

1.4Matrix notation
1.5General Quantum Systems
Problems

Chapter 2 OPERATORS AND MEASUREMENT
2.1Operators

2.1.1 Spin Projection in General Direction
2.1.2 Hermitian Operators
2.1.3 Projection Operators
2.1.4 Analysis of Experiments 3 and 4

2.2Measurement
2.3Commuting Observables
2.4Uncertainty Principle
2.5S2 Operator
2.6Spin 1 System
Problems

Chapter 3 SCHRÖDINGER TIME EVOLUTION
3.1Schrödinger Equation
3.2Spin Precession

3.2.1 Magnetic Field in z-direction
3.2.2 Magnetic field in general direction

3.3Neutrino Oscillations
3.4Magnetic Resonance
Problems



PREFACE

This text was developed as part of a course on Spin and Quantum Measurement at
Oregon State University.  The course is part of the Paradigms in Physics project, which
entailed a reform of the junior level physics curriculum.  The Spin and Quantum
Measurement course is an introduction to quantum mechanics through the analysis of
sequential Stern-Gerlach spin measurements.  The approach and material are based upon
previous presentations of spin systems by Feynman, Sakurai, Cohen-Tannoudji, and
Townsend.  The postulates of quantum mechanics are illustrated through their
manifestation in the simple spin 1/2 Stern-Gerlach experiments.  The organization of the
postulates follows the presentation of Cohen-Tannoudji.  The table below lists the
postulates briefly and their manifestation in the spin 1/2 system as presented in the course.

Postulates of Quantum Mechanics       Spin 1/2 manifestation    

1) State defined by ket + , −

2) Operators, observables Si , S, H

3) Measure eigenvalues   ±h 2

4) Probability + ψ 2

5) State reduction ψ → +

6) Schrödinger equation evolution Larmor precession

The specific examples covered are: sequential Stern-Gerlach measurements of spin
1/2 and spin 1 systems, spin precession in a magnetic field, spin resonance in an oscillating
magnetic field, neutrino oscillations, and the EPR experiment.  The tools of Dirac notation
and matrix notation are used throughout the course.  General two- and three-state quantum
mechanical systems are also covered as simple extensions of the spin systems.

The Stern-Gerlach experiments are discussed in class and are performed by the
students using a software program that simulates the experiments on spin 1/2 and spin 1
systems (also SU(3) for those ambitious enough!).  The program permits the students to
study any configuration of sequential Stern-Gerlach measurements, interferometers, spin
precession in a magnetic field, and which path (Welcher Weg) detection to destroy
interference.  The program provides the student with unknown quantum states that he must
determine through experiment.  The program is available  on the web at
http://www.physics.orst.edu/~mcintyre/ph425/spins/.

The aim of the text is twofold: (1) To give the students an immersion into the
quantum spookiness of quantum mechanics  by focusing on simple measurements that
have no classical explanation, and (2) To give the students experience with the mechanics
of quantum mechanics in the form of Dirac and matrix notation.  Since these two goals are
so at odds with classical mechanics, the simplicity of the spin 1/2 system allows the
students to focus on these new features instead of the complexity of the problem at hand.
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Chapter 1 STERN-GERLACH EXPERIMENTS

1.1 Introduction
Quantum mechanics is based upon a set of postulates that dictates how to treat a

quantum mechanical system mathematically and how to interpret the mathematics to
learn about the physical system in question.  These postulates cannot be proven, but they
have been successfully tested by many experiments, and so we accept them as an
accurate way to describe quantum mechanical systems.  New results could force us to
reevaluate these postulates at some later time.  The postulates are listed below to give you
an idea where we are headed and a framework into which you can place the new concepts
as we confront them.

Postulates of Quantum Mechanics
1. The state of a quantum mechanical system is described mathematically by

a normalized ket ψ  that contains all the information we can know about
the system.

2. A physical observable is described mathematically by an operator A that
acts on kets.

3. The only possible result of a measurement of an observable is one of the
eigenvalues an of the corresponding operator A.

4. The probability of obtaining the eigenvalue an in a measurement of the
observable A on the system in the state ψ  is

  P( )a an n= ψ 2
,

where an  is the normalized eigenvector of A corresponding to the
eigenvalue an.

5. After a measurement of A that yields the result an, the quantum system is
in a new state that is the normalized projection of the original system ket
onto the ket (or kets) corresponding to the result of the measurement:

′ =ψ
ψ

ψ ψ
P

P
n

n

.

6. The time evolution of a quantum system is determined by the Hamiltonian
or total energy operator H(t) through the Schrödinger equation

  
i

d

dt
t H t th ψ ψ( ) = ( ) ( ) .
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As you read these postulates for the first time, you will undoubtedly encounter
new terms and concepts.  Rather than explain them all here, the plan of this text is to
explain them through their manifestation in one of the simplest yet most instructive
examples in quantum mechanics – the Stern-Gerlach spin 1/2 experiment.  We choose
this example because it is inherently quantum mechanical and forces us to break away
from reliance on classical intuition or concepts.  Moreover, this simple example is a
paradigm for many other quantum mechanical systems.  By studying it in detail, we can
appreciate much of the richness of quantum mechanics.

1.2 Stern-Gerlach experiment
The Stern-Gerlach experiment is a conceptually simple experiment that

demonstrates many basic principles of quantum mechanics.  Studying this example has
two primary benefits: (1) It demonstrates how quantum mechanics works in principle by
illustrating the postulates of quantum mechanics, and (2) It demonstrates how quantum
mechanics works in practice through the use of Dirac notation and matrix mechanics to
solve problems.  By using an extremely simple example, we can focus on the principles
and the new mathematics, rather than having the complexity of the physics obscure these
new aspects.

In 1922 Otto Stern and Walter Gerlach performed a seminal experiment in the
history of quantum mechanics.  In its simplest form, the experiment consists of an oven
that produces a beam of neutral atoms, a region of inhomogeneous magnetic field, and a
detector for the atoms, as depicted in Fig. 1.1.  Stern and Gerlach used a beam of silver
atoms and found that the beam was split into two in its passage through the magnetic
field.  One beam was deflected upwards and one downwards in relation to the direction of
the magnetic field gradient.

To understand why this result is so at odds with our classical expectations, we

Figure 1.1.  Stern-Gerlach experiment to measure spin projection of neutral
particles along the z-axis.  The magnetic cross-section at right shows the
inhomogeneous field used in the experiment.

N

S

Oven

Collimator Magnet Detector

N

S
y

z

x

Magnet
Cross-section



Chap. 1  Stern-Gerlach Experiments

12/19/02

3

must first analyze the experiment classically.  The results of the experiment suggest an
interaction between a neutral particle and a magnetic field.  We expect such an
interaction if the particle possesses a magnetic moment µ.  The energy of this interaction
is given by E = − •µµ B, which results in a force F B= ∇ •( )µµ .  In the Stern-Gerlach
experiment, the magnetic field gradient is primarily in the z-direction, and the resulting
z–component of the force is

F
z

B

z

z

z
z

= ∂
∂

•( )

≅ µ ∂
∂

µµ B
. (1.1)

This force is perpendicular to the direction of motion and deflects the beam in proportion
to the magnitude of the magnetic moment in the direction of the magnetic field gradient.

Now consider how to understand the origin of the atom's magnetic moment from
a classical viewpoint.  The atom consists of charged particles, which, if in motion, can
produce loops of current that give rise to magnetic moments.  A loop of area A and
current I produces a magnetic moment

µ = IA

c
(1.2)

in cgs units.  If this loop of current arises from a charge q traveling at speed v in a circle
of radius r, then

µ =
π

π

=

=

1
2

2

2

2

c

q

r v
r

qrv

c
q

mc
L

, (1.3)

where L = mrv is the orbital angular momentum of the particle.  In the same way that the
earth revolves around the sun and rotates around its own axis, we can also imagine a
charged particle in an atom having orbital angular momentum L  and intrinsic rotational
angular momentum, which we call S.  The intrinsic angular momentum also creates
current loops, so we expect a similar relation between the magnetic moment µ and S.
The exact calculation involves an integral over the charge distribution, which we will not
do.  We simply assume that we can relate the magnetic moment to the intrinsic angular
momentum in the same fashion as Eq. (1.3), giving

µµ = g
q

mc2
S, (1.4)

where the gyroscopic ratio g contains the details of that integral.
A silver atom has 47 electrons, 47 protons, and 60 or 62 neutrons (for the most

common isotopes).  Since the magnetic moments depend on the inverse of the particle
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mass, we expect the heavy protons and neutrons (≈ 2000 me) to have little effect on the
magnetic moment of the atom and so we neglect them.  From your study of the periodic
table in chemistry, you recall that silver has an electronic configuration
1s22s22p63s23p64s23d104p64d105s, which means that there is only the lone 5s electron
outside of the closed shells.  The electrons in the closed shells can be represented by a
spherically symmetric cloud with no orbital or intrinsic angular momentum
(unfortunately we are injecting some quantum mechanical knowledge of atomic physics
into this classical discussion).  That leaves the lone 5s electron as a contributor to the
magnetic moment of the atom as a whole.  An electron in an s state has no orbital angular
momentum, but it does have intrinsic angular momentum, which we call spin.  Hence the
magnetic moment of this electron, and therefore of the entire neutral silver atom, is

µµ = − eg

m ce2
S, (1.5)

where e is the magnitude of the electron charge.  The classical force on the atom can now
be written as

F
eg

m c
S

B

zz
e

z
z≅ − ∂

∂2
. (1.6)

The deflection of the beam in the Stern-Gerlach experiment is thus a measure of the
component or projection Sz of the spin along the z-axis, which is the orientation of the
magnetic field gradient.

If we assume that each electron has the same magnitude S  of the intrinsic angular
momentum or spin, then classically we would write the projection as Sz = S cosθ, where
θ is the angle between the z-axis and the direction of the spin S.  In the thermal
environment of the oven, we expect a random distribution of spin directions and hence all
possible angles θ.  Thus we expect some continuous distribution (the details are not
important) of spin projections from Sz = −S  to Sz = +S , which would yield a continuous
spread in deflections of the silver atomic beam.  Rather, the experimental result is that
there are only two deflections, indicating that there are only two possible values of the
spin projection of the electron.  The magnitudes of these deflections are consistent with
values of the spin projection of

  
Sz = ± h

2
, (1.7)

where   h  is Planck's constant h divided by 2π and has the numerical value

  

h = × ⋅

× ⋅

−

−

1 0546 10

6 10

27

16

. erg s

= .5821 eV s
. (1.8)

This result of the Stern-Gerlach experiment is evidence of the quantization of the
electron's spin angular momentum projection along an axis.  This quantization is at odds
with our classical expectations for this measurement.  The factor of 1/2 in Eq. (1.7) leads
us to refer to this as a spin 1/2 system.  In this example, we have chosen the z-axis along
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which to measure the spin projection, but we could have chosen any other axis and would
have obtained the same results.

Now that we know the fine details of the Stern-Gerlach experiment, we simplify
the experiment for the rest of our discussions by focusing on the essential features.  A
simplified schematic representation of the experiment is shown in Fig. 1.2, which depicts
an oven that produces the beam of atoms, a Stern-Gerlach device with two output ports
for the two possible values of the spin projection, and two counters to detect the atoms
leaving the output ports of the Stern-Gerlach device.  The Stern-Gerlach device is labeled
with the axis along which the magnetic field is oriented.  The up and down arrows
indicate the two possible measurement results for the device; they correspond
respectively to the results   Sz = ±h 2 in the case where the field is oriented along the
z–axis.  Since there are only two possible results in this case, they are generally referred
to simply as spin up and spin down.  The physical quantity that is measured, Sz in this
case, is called an observable.  In our detailed discussion of the experiment above, we
chose the field gradient in such a manner that the spin up states were deflected upwards.
In this new simplification, the deflection is not an important issue.  We simply label the
output port with the desired state and count the particles leaving that port.

In Fig. 1.2, the output beams have also been labeled with a new symbol called a
ket. We use the ket +  as a mathematical representation of the quantum state of the
atoms that exit the upper port corresponding to   Sz = +h 2.  The lower output beam is
labeled with the ket − , which corresponds to   Sz = −h 2.  According to postulate 1,
which is repeated below, these kets contain all the information that we can know about
the system.  Since there are only two possible results of the measurement, there are only
two kets for this system (we are ignoring the position and velocity of the atoms in the
beam).  This ket notation was developed by P. A. M. Dirac and is central to the approach
to quantum mechanics that we will take in this text.  We will discuss the mathematics of
these kets in full detail later.  For now, it is sufficient for us to consider the ket as simply
labeling the quantum state.  With regard to notation, you will find many different ways of
writing the ±  kets (±  refers to both the +  and −  kets).  The information contained
within the ket symbol is used merely to label the ket and to distinguish the ket from other
different kets.  For example, the kets + ,   +h 2 ,   Sz = +h 2 , +ẑ , and ↑  are all

equivalent ways of writing the same thing, and they all behave the same mathematically.

Figure 1.2.  Simplified schematic of Stern-Gerlach experiment, depicting source of atoms,
Stern-Gerlach analyzer, and counters.
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Postulate 1
The state of a quantum mechanical system is described mathematically
by a normalized ket ψ  that contains all the information we can know

about the system.

We have chosen the particular simplified schematic representation of Stern-
Gerlach experiments shown in Fig. 1.2 because it is the same representation used in the
SPINS software program that you may use to simulate these experiments.  The SPINS
program allows you to perform all the experiments described in this text.  In the program,
the components are simply connected together to represent the paths the atoms take.  The
directions and deflections of the beams in the program are not relevant, and so we follow
that lead in our depiction of the experiment hereafter.  That is, whether the spin up output
beam is drawn as deflected upwards, or downwards, or not all is not relevant.  The
labeling on the output port is enough to tell us what that state is.  Thus the extra ket label
+  on the spin up output beam in Fig. 1.2 is redundant and will be dropped soon.

The SPINS program permits alignment of Stern-Gerlach analyzing devices along
all three axes and also at any angle φ measured from the x-axis in the x-y plane.  This
would appear to be difficult, if not impossible, given that the atomic beam in Fig. 1.1 is
directed along the y-axis, making it unclear how to align the magnet in the y-direction
and measure a deflection.  In our depiction and discussion of Stern-Gerlach experiments,
we ignore this technical complication.

In the SPINS program, as in real Stern-Gerlach experiments, the numbers of
atoms detected in particular states are determined by probability rules that we will discuss
later.  To simplify our schematic depictions of Stern-Gerlach experiments, the numbers
shown for detected atoms are obtained by simply using the calculated probabilities
without any regard to possible statistical uncertainties.  That is, if the probabilities of two
possibilities are each 50%, then our schematics will display equal numbers for those two
possibilities, whereas in a real experiment, statistical uncertainties might yield a
55%/45% split in one experiment and a 47%/53% split in another, etc.  In your SPINS
program simulations, you will note these statistical uncertainties and so will need to
perform enough experiments to convince yourself that you have a sufficiently good
estimate of the probability (see Appendix A for more information on statistics).

Now consider a series of simple Stern-Gerlach experiments with slight variations
that help to illustrate the main features of quantum mechanics.  We first describe the
experiments and their results and draw some qualitative conclusions about the nature of
quantum mechanics.  Then we introduce the formal mathematics of the ket notation and
show how it can be used to predict the results of each of the experiments.

1.2.1 Experiment 1

The first experiment is shown in Fig. 1.3 and consists of a source of atoms, two
Stern-Gerlach devices both aligned along the z-axis, and counters for some of the output
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ports of the analyzers.  The atomic beam coming into the 1st Stern-Gerlach device is split
into two beams at the output, just like the original experiment.  Now instead of counting
the atoms in the upper output beam, the spin projection is measured again by directing
those atoms into the 2nd Stern-Gerlach device.  The result of this experiment is that no
atoms are ever detected coming out of the lower output port of the 2nd Stern-Gerlach
device.  All atoms that are output from the upper port of the 1st device also pass through
the upper port of the 2nd device.  Thus we say that when the 1st Stern-Gerlach device
measures an atom to have   Sz = +h 2, then the 2nd device also measures   Sz = +h 2 for
that atom.

Though both devices are identical, the 1st device is often referred to as the
polarizer and the 2nd one as the analyzer, since the 1st one "polarizes" the beam along the
z-axis and the second one "analyzes" the resultant beam.  This is analogous to what can
happen with optical polarizers.  Some also refer to the 1st analyzer as a state preparation
device, since it prepares the quantum state that is then measured with the analyzer.  By
preparing the state in this manner, the details of the source of atoms can be ignored.  Thus
our main focus in Experiment 1 is what happens at the analyzer, since we know that any
atom entering the analyzer is described by the +  ket prepared by the polarizer.  All the
experiments we will describe employ a polarizer to prepare the state, though the SPINS
program has a feature where the state of the atoms coming from the oven is determined
but unknown and the user can perform experiments to figure out the unknown state.

1.2.2 Experiment 2

The second experiment is shown in Fig. 1.4 and is identical to Experiment 1
except that the analyzer has been rotated by 90˚ to be aligned with the x-axis.  Now the
analyzer measures the spin projection along the x-axis rather the z-axis.  Atoms input to
the analyzer are still described by the ket +  since the polarizer is unchanged.  The result
of this experiment is that atoms appear at both possible output ports of the analyzer.
Atoms leaving the upper port of the analyzer have been measured to have   Sx = +h 2  and
atoms leaving the lower port have   Sx = −h 2 .  On average, each of these ports has 50%
of the atoms that left the upper port of the analyzer.  As shown in Fig. 1.4, the output

|+〉
|+〉

|−〉 |−〉

ZZ

50

50

0

Figure 1.3.  Experiment 1 measures the spin projection along the z-axis twice in succession.
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states of the 2nd analyzer have new labels + x  and − x , where the x subscript denotes
that the spin projection has been measured along the x-axis.  We assume that if no
subscript is present on the quantum ket, then the spin projection is along the z-axis.  This
use of the z–axis as the default is common throughout our work and also in much of
physics.

A few items are noteworthy about this experiment.  First, we notice that there are
still only two possible outputs of the Stern-Gerlach analyzer.  The fact that it is aligned
along a different axis doesn't affect the fact that we can only ever get two possible results
for the case of a spin 1/2 particles.  Second, note that the results of this experiment would
be unchanged if we used the lower port of the polarizer.  That is, atoms entering the
analyzer in state −  would also result in half the atoms in each of the ± xoutput ports.
Finally, note that we cannot predict which of the analyzer output ports any particular
atom will come out.  This can be demonstrated experimentally by recording the counts
out of each port.  The arrival sequences at any counter are completely random.  We can
only say that there is a 50% probability that an atom from the polarizer will exit the upper
analyzer port and a 50% probability that it will exit the lower port.  The random arrival of
atoms at the detectors can be seen clearly in the SPINS program simulations.

This probabilistic nature is at the heart of quantum mechanics.  One might be
tempted to say that we just don't know enough about the system to predict which port the
atom will be registered in.  That is to say, there may be some other variables, of which we
are ignorant, that would allow us to predict the results.  Such a viewpoint is know as a
hidden variable theory, and such theories have been proven to be incompatible with
quantum mechanics.  John Bell proved that such a quantum mechanical system cannot be
described by a hidden variable theory, which amounts to saying that the system cannot
have things we don't know about.  It is a pretty powerful statement to be able to say that
there are not things that we cannot know about a system.  The conclusion to draw from
this is that even though quantum mechanics is a probabilistic theory, it is a complete
description of reality.  We will have more to say about this later.

Note that the 50% probability referred to above is the probability that an atom
input to the analyzer exits one particular output port.  It is not the probability for an atom

|+〉

|−〉
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Figure 1.4.  Experiment 2 measures the spin projection along the z-axis and then along the x-axis.
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to pass through the whole system of Stern-Gerlach devices.  Later we will have occasion
to ask about such a probability and then we will say so.  Note also that the results of this
experiment (the 50/50 split at the analyzer) would be the same for any combination of
two orthogonal axes of the polarizer and analyzer.

1.2.3 Experiment 3

Now consider Experiment 3, shown in Fig. 1.5, which extends Experiment 2 by
adding a third Stern-Gerlach device aligned along the z-axis.  (In this case, we refer to
each device as an analyzer and label them first, second, or third.)  Atoms entering the
new third analyzer have been measured by the first Stern-Gerlach analyzer to have spin
projection up along the z-axis, and by the second analyzer to have spin projection up
along the x-axis.  The third analyzer then measures how many atoms have spin projection
up or down along the z-axis.  Classically, one would expect that the final measurement
would yield the result spin up along the z-axis, since that was measured at the first
analyzer.  That is to say: classically the first 2 analyzers tell us that the atoms have

  Sz = +h 2 and   Sx = +h 2 , so the third measurement must yield   Sz = +h 2.  But that
doesn't happen.  The quantum mechanical result is that the atoms are split with 50%
probability into each output port at the third analyzer.  Thus the last two analyzers behave
like the two analyzers of Experiment 2 (except with the order reversed), and the fact that
there was an initial measurement that yielded   Sz = +h 2 is somehow forgotten or erased.

This result demonstrates another key feature of quantum mechanics: the
measurement perturbs the system.  One might ask: Can I be more clever in designing the
experiment such that I don't perturb the system?  The short answer is no.  There is a
fundamental incompatibility in trying to measure the spin projection of the atom along
two different directions.  So we say that Sx and Sz are incompatible observables.  We
cannot know the values of both simultaneously.  The state of the system can be described
by the ket   + = = +Sz h 2  or by the ket 

  
+ = = +x xS h 2 , but it cannot be described

by a ket 
  
S Sz x= + = +h h2 2,  that specifies values of both projections.  Having said

this, it should be noted that not all pairs of quantum mechanical observables are
incompatible.  It is possible to do some experiments without perturbing some other
aspects of the system.  And we will see later that whether two observables are compatible

125
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Figure 1.5.  Experiment 3 measures the spin projection three times in succession.
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or not is very important in how we analyze a quantum mechanical system.
Not being able to measure both the Sz and Sx spin projections is clearly distinct

from the classical case whereby we can measure all three components of the spin vector,
which tells us which direction the spin is pointing.  In quantum mechanics, we cannot
know which direction the spin is pointing.  So when we say the spin is up, we really mean
only that the spin projection along that one axis is up (vs. down).  The spin is not really
pointing in any given direction.  This is an example of where you must check your
classical intuition at the door.

1.2.4 Experiment 4

Experiment 4 is depicted in Fig. 1.6 and is a slight variation on Experiment 3.
Before we get into the details, note a few changes in the schematic drawings.  As
promised, we have dropped the ket labels on the beams since they are redundant.  We
have deleted the counters on all but the last analyzer and instead simply block the
unwanted beams and give the average number of atoms passing from one analyzer to the
next. Note also that in Experiment 4c two output beams are combined as input to the
following analyzer.  This is simple in principle and in the SPINS program, but can be
difficult in practice.  The recombination of the beams must be done properly so as to

25

25

XZ Za)
100 50

25

25

XZ Zb)
100

50

100

0

XZ Zc)
100 100

Figure 1.6.  Experiment 4 measures the spin projection three times in succession and uses
one (a and b) or two beams (c) from the middle analyzer.
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avoid "disturbing" the beams.  If you care to read more about this problem, see
Feynman's Lectures on Physics, volume 3.  We will have more to say about the
"disturbance" later.  For now we simply assume that the beams can be recombined in the
proper manner.

Experiment 4a is identical to Experiment 3.  In Experiment 4b the upper beam of
the middle analyzer is blocked and the lower beam is sent to the third analyzer.  In
Experiment 4c, both beams are combined with our new method and sent to the third
analyzer.  It should be clear from our previous experiments that Experiment 4b has the
same results as Experiment 4a.  We now ask what the results of Experiment 4c are.  If we
were to use classical probability analysis, then Experiment 4a would indicate that the
probability for an atom leaving the first analyzer to take the upper path through the
second analyzer and then exit through the upper port of the third analyzer is 25%, where
we are now referring to the total probability for those two steps.  Likewise,
Experiment 4b would indicate that the probability to take the lower path through the
second analyzer and exit through the upper port of the third analyzer is also 25%.  Hence
the total probability to exit from the upper port of the third analyzer when both paths are
available, which is simply Experiment 4c, would be 50%, and likewise for the exit from
the lower port.

However, the quantum mechanical result in Experiment 4c is that all the atoms
exit the upper port of the third analyzer and none exits the lower port.  The atoms now
appear to "remember" that they were initially measured to have spin up along the z-axis.
By combining the two beams from the middle analyzer, we have avoided the quantum
mechanical perturbation that was evident in Experiment 3.  The result is now the same as
Experiment 1, which means it is as if the middle analyzer is not there.

To see how odd this is, look carefully at what happens at the lower port of the
third analyzer.  In this discussion, we refer to percentages of atoms leaving the first
analyzer, since that analyzer is the same in all three experiments.  In Experiments 4a and
4b, 50% of the atoms are blocked after the middle analyzer and 25% of the atoms exit the
lower port of the third analyzer.  In Experiment 4c, 100% of the atoms pass from the
second analyzer to the third analyzer, yet fewer atoms come out of the lower port.  In
fact, no atoms make it through the lower port!  So we have a situation where allowing
more ways or paths to reach a counter results in fewer counts.  Classical probability
theory cannot explain this aspect of quantum mechanics.

However, you may already know of a way to explain this effect.  Imagine a
procedure whereby combining two effects leads to cancellation rather than enhancement.
The concept of wave interference, especially in optics, comes to mind.  In the Young's
double slit experiment, light waves pass through two narrow slits and create an
interference pattern on a distant screen, as shown in Fig. 1.7.  Either slit by itself
produces a nearly uniform illumination of the screen, but the two slits combined
produced bright and dark fringes.  We explain this by adding together the electric field
vectors of the light from the two slits, then squaring the resultant vector to find the light
intensity.  We say that we add the amplitudes and then square the total amplitude to find
the resultant intensity.
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We follow a similar prescription in quantum mechanics.  We add together
amplitudes and then take the square to find the resultant probability.  Before we do this,
we need to explain what we mean by an amplitude in quantum mechanics and how we
calculate it.

1.3 Quantum State Vectors
Postulate 1 stipulates that kets are to be used for a mathematical description of a

quantum mechanical system.  These kets are abstract vectors that obey many of the rules
you know about ordinary spatial vectors.  Hence they are often called quantum state
vectors.  As we will show later, these vectors must employ complex numbers in order to
properly describe quantum mechanical systems.  Quantum state vectors are part of a
vector space whose dimensionality is determined by the physics of the system at hand.  In
the Stern-Gerlach example, the two possible results for a spin projection measurement
dictate that the vector space has only two dimensions.  That makes this problem simple,
which is why we have chosen to study it.  Since the quantum state vectors are abstract, it
is hard to say much about what they are, other than how they behave mathematically and
how they lead to physical predictions.

In the two-dimensional vector space of a spin 1/2 system, the two kets ±  form a
basis, just like the unit vectors î , ĵ, and k̂  form a basis for describing vectors in three
dimensional space.  However, the analogy we want to make with these spatial vectors is
only mathematical, not physical.  The spatial unit vectors have three important
mathematical properties that are characteristic of a basis: the basis vectors are
orthogonal, normalized, and complete (meaning any vector in the space can be written
as a linear superposition of the basis vectors).  These properties of spatial basis vectors
can be summarized as follows:

Pinhole
Source

ScreenDouble
Slit

Single Slit
Patterns

Double Slit
Pattern

Figure 1.7.  Young's double slit interference experiment.
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ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

i i j j k k

i j i k j k

A i j k

• = • = • =

• = • = • =

= + +

1

0

        normalization

       orthogonality

           completenessa a ax y z

, (1.9)

where A  is any vector.
Continuing the mathematical analogy between spatial vectors and abstract

vectors, we require that these same properties (at least conceptually) apply to quantum
mechanical basis vectors.  The completeness of the kets ±  implies that any quantum
state vector ψ  can be written as a linear combination of the two basis kets:

ψ = + + −a b , (1.10)

where a and b are complex scalar numbers multiplying each ket.  This addition of two
kets yields another ket in the same abstract space.  The complex scalar can appear either
before or after the ket without affecting the mathematical properties of the ket
(i.e., a a+ = + ).  Note that is customary to use the symbol ψ for a generic quantum
state.  You may have seen ψ(x) used before as a wave function.  However, the state
vector ψ  is not a wave function.  It has no spatial dependence as a wave function does.

To discuss orthogonality and normalization (known together as orthonormality )
we must first define scalar products as they apply to these new kets.  As we said above,
the machinery of quantum mechanics requires the use of complex numbers.  You may
have seen other fields of physics use complex numbers.  For example, sinusoidal
oscillations can be described using the complex exponential ei tω  rather than cos(ωt).
However, in such cases, the complex numbers are not required, but are rather a
convenience to make the mathematics easier.  When using complex notation to describe
classical vectors like electric and magnetic fields, dot products are changed slightly such
that one of the vectors is complex conjugated.  A similar approach is taken in quantum
mechanics.  The analog to the complex conjugated vector in classical physics is called a
bra in the Dirac notation of quantum mechanics.  Thus corresponding to the ket ψ  is a
bra, or bra vector, which is written as ψ .  The bra ψ  is defined as

ψ = + + −a b* * , (1.11)

where the basis bras +  and −  correspond to the basis kets +  and − , respectively,
and the coefficients a and b have been complex conjugated.

The scalar product in quantum mechanics is defined as the combination of a bra
and a ket, such as + + , which as you would guess is equal to one since we want the
basis vectors to be normalized.  Note that the bra and ket must occur in the proper order.
Hence bra and ket make bracket – physics humor.  The scalar product is often also called
an inner product or a projection in quantum mechanics.  Using this notation,
orthogonality is expressed as + − = 0.  Hence the properties of normalization,
orthogonality, and completeness can be expressed in the case of a two-state quantum
system as:
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+ + =
− − =





+ − =
− + =





= + + −

1

1

0

0

               normalization

                orthogonality

      completenessψ a b

. (1.12)

Note that a product of kets (e.g., + + ) or a product of bras (e.g., + + ) is meaningless
in this new notation, while a product of a ket and a bra in the "wrong" order (e.g., + + )
has a meaning that we will define later.  Equations (1.12) are sufficient to define how the
basis kets behave mathematically.  Note that the inner product is defined using a bra and
a ket, though it is common to refer to the inner product of two kets, where it is understood
that one is converted to a bra first. The order does matter as we will see shortly.

Using this new notation, we can learn a little more about general quantum states
and derive some expressions that will be useful later.  Consider the general state vector
ψ = + + −a b .  Take the inner product of this ket with the bra +  and obtain

+ = + + + + −

= + + + + −
=

ψ a b

a b

a

, (1.13)

using the property that scalars can be moved freely through bras or kets.  Likewise, it can
be shown that − =ψ b.  Hence the coefficients multiplying the basis kets are simply the
inner products or projections of the general state ψ  along each basis ket, albeit in an
abstract complex vector space, rather than the concrete three dimensional space of normal
vectors.  Using these results, we can rewrite the general state as

ψ ψ ψ

ψ ψ

= + + + − −

= + + + − −
, (1.14)

where the rearrangement of the second equation again uses the property that scalars
(e.g., + ψ ) can be moved through bras or kets.

For a general state vector ψ = + + −a b  we defined the corresponding bra to
be ψ = + + −a b* * .  Thus, the inner product of the state ψ  with the basis ket +
taken in the reverse order compared to Eq. (1.13) yields

ψ + = + + + − +

= + + + − +

=

a b

a b

a

* *

* *

*

. (1.15)

Thus we see that an inner product with the states reversed results in a complex
conjugation of the inner product:

+ = +ψ ψ *. (1.16)

This important property holds for any inner product.
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Now we come to a new aspect of quantum vectors that differs from our use of
vectors in classical mechanics.  The rules of quantum mechanics (postulate 1) require that
all state vectors describing a quantum system be normalized, not just the basis kets.  This
is clearly different from ordinary spatial vectors, where the length or magnitude means
something.  This new rule means that in the quantum mechanical state space only the
direction is important.  If we apply this normalization requirement to the general state
ψ , then we obtain

ψ ψ = + + −{ } + + −{ } =

⇒ + + + + − + − + + − − =

⇒ + =

⇒ + =

a b a b

a a a b b a b b

a a b b

a b

* *

* * * *

* *

1

1

1

12 2

, (1.17)

or using the expressions for the coefficients obtained above,

+ + − =ψ ψ2 2
1. (1.18)

Now comes the crucial element of quantum mechanics.  We postulate that each
term in the sum of Eq. (1.18) is equal to the probability  that the quantum state described
by the ket ψ  is measured to be in the corresponding basis state.  Thus

  P( )+ = + ψ 2
(1.19)

is the probability that the state ψ  is found to be in the state +  when a measurement of

Sz is made, meaning that the result   Sz = +h 2 is obtained.  Likewise,

  P( )− = − ψ 2
(1.20)

is the probability that the measurement yields the result   Sz = −h 2.  Since this simple
system has only two possible measurement results, the probabilities must add up to one,
which is why the rules of quantum mechanics require that state vectors be properly
normalized before they are used in any calculation of probabilities.  This is an application
of the 4th postulate of quantum mechanics, which is repeated below.

Postulate 4
The probability of obtaining the eigenvalue an in a measurement of the

observable A on the system in the state ψ  is

  P( )a an n= ψ 2
,

where an  is the eigenvector of A corresponding to the eigenvalue an.

This formulation of the 4th postulate uses some terms we have not defined yet.  A simpler
version employing the terms we know at this point would read:
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Postulate 4 (Spin 1/2 system)
The probability of obtaining the value   ±h 2  in a measurement of the

observable Sz on a system in the state ψ  is

  P( )± = ± ψ 2
,

where ±  is the basis ket of Sz corresponding to the result   ±h 2 .

The inner product, + ψ  for example, is called the probability amplitude  or
sometimes just the amplitude.  Note that the convention is to put the input or initial state
on the right and the output or final state on the left: out in , so one would read from
right to left in describing a problem.  Since the probability involves the complex square
of the amplitude, and out in in out= * , this convention is not critical for calculating
probabilities.  Nonetheless, it is the accepted practice and is important in situations where
several amplitudes are combined.

Armed with these new quantum mechanical rules and tools, we now return to
analyze the experiments discussed earlier.

1.3.1 Analysis of Experiment 1

In Experiment 1, the initial Stern-Gerlach analyzer prepared the system in the +
state and the second analyzer measured this state to always be in the +  state and never
in the −  state.  Our new tools would predict the results of these measurements as

  

P

P

( )

( )

+ = + + =

− = − + =

2

2

1

0
, (1.21)

which agree with the experiment and are also consistent with the normalization and
orthogonality properties of the basis vectors +  and − .

1.3.2 Analysis of Experiment 2

In Experiment 2, the initial Stern-Gerlach analyzer prepared the system in the +
state and the second analyzer performed a measurement of the spin projection along the
x-axis, finding 50% probabilities for each of the two possible states + x  and − x .  In this
case, we cannot predict the results of the measurements, since we do not yet have enough
information about how the states + x  and − x  behave mathematically.  Rather, we can
use the results of the experiment to determine these states.  Recalling that the
experimental results would be the same if the first analyzer prepared the system to be in
the −  state, we have four results:

  

P

P

P

P

1
2 1

2

1
2 1

2

2
2 1

2

2
2 1

2

( )

( )

( )

( )

+ = + + =

− = − + =

+ = + − =

− = − − =

x

x

x

x

(1.22)



Chap. 1  Stern-Gerlach Experiments

12/19/02

17

Since the kets +  and −  form a basis, we know that the kets describing the Sx

measurement, + x  and − x , can be written in terms of them.  The ±  kets are referred to
as the Sz basis, and allow us to write

+ = + + −

− = + + −
x

x

a b

c d
, (1.23)

where we wish to find the coefficients a, b, c, and d.  Combining these with the
experimental results (Eq. (1.22)), we obtain

x a b

a

a

+ + = + + −{ } + =

= =

= =

2 2
1
2

2 1
2

2 1
2

* *

* (1.24)

Likewise, one can show that b c d2 2 2 1
2= = = .  Since each coefficient is complex, it

has an amplitude and phase.  However, since the overall phase of a quantum state vector
is not physically meaningful (problem 1.2), we can choose one coefficient of each vector
to be real and positive without any loss of generality.  This allows us to write the desired
states as

+ = + + −[ ]
− = + + −[ ]

x
i

x
i

e

e

1
2

1
2

α

β
. (1.25)

Note that these are already normalized since we used all of the experimental results,
which reflect the fact that the probability for all possible results of an experiment must
sum to one.

The ± x  kets also form a basis, the Sx basis, since they correspond to the distinct
results of a spin projection measurement.  Thus we also must require that they are
orthogonal to each other, which leads to

x x

i i

i

i

i i

e e

e

e

e e

− + =

+ + −[ ] + + −[ ] =

+[ ] =

= −

= −

−

−( )

−( )

0

0

1 0

1

1
2

1
2

1
2

β α

α β

α β

α β

. (1.26)

where the complex conjugation of the second coefficient of the x −  bra should be noted.
At this point, we are free to choose the value of the phase α since there is no more
information that can be used to constrain it.  This freedom comes from the fact that we
have required only that the x-axis be perpendicular to the z-axis, which limits it only to a
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plane rather than a single line.  We follow convention here and choose the phase α = 0.
Thus we can express the Sx basis kets in terms of the Sz basis kets as

+ = + + −[ ]
− = + − −[ ]

x

x

1
2

1
2

. (1.27)

We generally use the Sz basis, but could use any basis we choose.  If we were to use the
Sx basis, then we could write the ±  kets in terms of the ± x  kets.  This can be done by
simply solving Eqs. (1.27) for the ±  kets, yielding

+ = + + −[ ]
− = + − −[ ]

1
2

1
2

x x

x x

. (1.28)

In terms of the measurement performed in Experiment 2, these equations tells us
that the +  state is a combination of the states + x  and − x .  The coefficients tell us that
there is a 50% probability for measuring the spin projection to be up along the x-axis, and
likewise for the down possibility, which is what was measured.  A combination of states
is usually referred to as a superposition state.

1.3.3 Superposition states

To understand the importance of a quantum mechanical superposition of states,
consider the + x  state found above.  This state can be written in terms of the Sz basis
states as

+ = + + −[ ]x
1
2

. (1.29)

If we measure the spin projection along the x-axis for this state, then we record only the
result   Sx = +h 2  (Experiment 1 with both analyzers along the x-axis).  If we measure the
spin projection along the orthogonal z-axis, then we record the two results   Sz = ±h 2
with 50% probability each (Experiment 2 with the first and second analyzers along the
x– and z-axes, respectively).  Based upon these results, one might be tempted to consider
the + x  state as describing a beam that contains a mixture of atoms with 50% of the
atoms in the +  state and 50% in the −  state.

Let's now carefully examine the results of experiments on this proposed mixture
beam.  If we measure the spin projection along the z-axis, then each atom in the +  state
yields the result   Sz = +h 2 with 100% certainty and each atom in the −  state yields the
result   Sz = −h 2 with 100% certainty.  The net result is that 50% of the atoms yield

  Sz = +h 2 and 50% yield   Sz = −h 2.  This is exactly the same result as that obtained with
all atoms in the + x  state.  If we instead measure the spin projection along the x-axis,
then each atom in the +  state yields the two results   Sx = ±h 2  with 50% probability
each (Experiment 2 with the first and second analyzers along the z- and x-axes,
respectively).  The atoms in the −  state yield the same results.  The net result is that
50% of the atoms yield   Sx = +h 2  and 50% yield   Sx = −h 2 .  This is in stark contrast to
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the results of Experiment 1, which tells us that once we have measured the state to be
+ x , then subsequent measurements yield   Sx = +h 2  with certainty.

Hence we must conclude that the system described by the + x  state is not the
same as a mixture of atoms in the +  and −  states.  This means that each atom in the
beam is in a state that itself is a combination of the +  and −  states.  A superposition
state is often called a coherent superposition since the relative phase of the two terms is
important.  For example, if the beam were in the − x  state, then there would be a relative
minus sign between the two coefficients, which would result in a   Sx = −h 2
measurement but would not affect the Sz measurement.

We will not have any further need to speak of mixtures, so any combination of
states is a superposition.  Note that we cannot even write down a ket for the mixture case.
So, if someone gives you a quantum state written as a ket, then it must be a superposition
and not a mixture.  The random option in the SPINS program produces a mixture, while
the unknown states are all superpositions.

1.4 Matrix notation
Up to this point we have defined kets mathematically in terms of their inner

products with other kets.  Thus in the general case we can write a ket as

ψ ψ ψ= + + + − − , (1.30)

or in a specific case, we can write

+ = + + + + − + −

= + + −
x x x

1
2

1
2

. (1.31)

In both of these cases, we have chosen to write the kets in terms of the +  and −  basis
kets.  If we agree on that choice of basis as a convention, then we really only need to
specify the coefficients, and we can simply the notation by merely using those numbers.
Thus, we can represent a ket as a column vector containing the two coefficients
multiplying each basis ket.  For example, we represent + x  as

+ =






•

x   
1

2
1

2

, (1.32)

where we have used the symbol =•  to signify "is represented by", and it is understood that
we are using the +  and −  basis or the Sz basis.  We cannot say that the ket equals the
column vector, since the ket is an abstract vector in the state space and the column vector
is just two complex numbers.  We also need to have a convention for the ordering of the
amplitudes in the column vector.  The standard convention is to put the spin up amplitude
first (at top).  Thus the representation of the − x  state  (Eq. (1.28)) is

− = −






•

x   
1

2
1

2

. (1.33)

Using this convention, it should be clear that the basis kets themselves can be written as
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+ = 





− = 





•

•

  

  

1

0

0

1

. (1.34)

This expression of a ket simply as the coefficients multiplying the basis kets is
referred to as a representation.  Since we have assumed the Sz basis kets, this is called
the Sz representation.  It is always true that basis kets have the simple form shown in
Eq. (1.34) when written in their own representation.  A general ket ψ  is written as

ψ
ψ
ψ

  =
+
−







• . (1.35)

This use of matrices simplifies the mathematics of bras and kets.  The advantage is not so
evident for the simple 2 dimensional state space of spin 1/2 systems, but is very evident
for larger dimensional problems.  This notation is indispensable when using computers to
calculate quantum mechanical results.  For example, the SPINS program employs matrix
notation to simulate the Stern-Gerlach experiments.

We saw earlier that the coefficients of a bra are the complex conjugates of the
coefficients of the corresponding ket.  We also know that an inner product of a bra and a
ket yields a single complex number.  In order for the matrix rules of multiplication to be
used, a bra must be represented by a row vector, with the entries being the coefficients
ordered in the same sense as for the ket.  For example, if we use the general ket

ψ = + + −a b , (1.36)

which can be represented as

ψ   = 





• a

b
, (1.37)

then the corresponding bra

ψ = + + −a b* * (1.38)

can be represented as a row vector as

ψ   = ( )• a b* * . (1.39)

The rules of matrix algebra can then be applied to find an inner product.  For example,

ψ ψ =( )



= +

a b
a

b

a b

* *

2 2

. (1.40)

So a bra is represented by a row vector that is the complex conjugate and transpose of the
column vector representing the corresponding ket.
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To get some practice using this new matrix notation, and to learn some more
about the spin 1/2 system, consider Experiment 2 in the case where the second Stern-
Gerlach analyzer is aligned along the y-axis.  We said before that the results will be the
same as in the case shown in Fig. 1.2.  Thus we have

  

P

P

P

P

1
2 1

2

1
2 1

2

2
2 1

2

2
2 1

2

( )

( )

( )

( )

+ = + + =

− = − + =

+ = + − =

− = − − =

y

y

y

y

. (1.41)

This allows us to determine the kets ± y  corresponding to spin projection up and down
along the y-axis.  The argument and calculation proceeds exactly as it did earlier for the
± x  states up until the point where we arbitrarily choose the phase α to be zero.  Having

done that for the ± x  states, we are no longer free to make that same choice for the ± y
states.  Thus we can write the ± y  states as

+ = + + −[ ] = 





− = + − −[ ] =
−







•

•

y
i

i

y
i

i

e
e

e
e

1
2

1
2

1
2

1
2

α
α

α
α

  
1

   
1

(1.42)

To determine the phase α, we can use some more information at our disposal.
Experiment 2 could be performed with the first Stern-Gerlach analyzer along the x-axis
and the second along the y-axis.  Again the results would be identical (50% at each
output port), yielding

  P( )+ = + + =y x

2 1
2 (1.43)

as one of the measured quantities.  Now use matrix algebra to calculate this:

y x
i

i

y x
i i

i i

e

e

e e

e e

+ + = ( ) 





= +( )
+ + = +( ) +( )

= + + +( )
= +( ) =

−

−

−

−

1
2

1
2

1
2

2 1
2

1
2

1
4

1
2

1
2

1
1

1

1 1

1 1

1

α

α

α α

α α

α

 
1

cos

(1.44)

This result requires that cosα = 0, or that α = ± π 2 .  The two choices for the phase
correspond to the two possibilities for the direction of the y-axis relative to the already
determined x- and z-axes.  The choice α = + π 2  can be shown to correspond to a right
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handed coordinate system. Since that is the standard convention, we will choose that
phase.  We thus represent the ± y  kets as

+ = 





− =
−







•

•

y

y

i

i

  
1

   
1

1
2

1
2

(1.45)

Note that the imaginary components of these kets are required.  They are not merely a
mathematical convenience as one sees in classical mechanics.  In general quantum
mechanical state vectors have complex coefficients.  But this does not imply any
complexity in the results of physical measurements, since we always have to calculate a
probability which involves a complex square, so all quantum mechanics predictions are
real.

1.5 General Quantum Systems
The machinery we have developed for spin 1/2 systems can be generalized to

other quantum systems.  For example, if we have an observable A that yields quantized
measurement results an for some finite range of n, then we could generalize the schematic
depiction of a Stern-Gerlach measurement as shown in Fig. 1.8.  The observable A labels
the measurement device and the possible results label the output ports. The basis kets
corresponding to the results an are then an .  The mathematical rules about kets can then
be written in this general case as

a a

a a

i j ij

i i
i

=

=

=

∑
δ

ψ ψ

ψ φ φ ψ

               orthonormality

      completeness

           amplitude conjugation*

Figure 1.8.  Generic depiction of quantum mechanical measurement of observable A.

A
a1

a3

a2

|a1〉

|a2〉

|a3〉

|ψin〉
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Problems

1.1 Show that a change in the overall phase of a quantum state vector does not change
the probability of obtaining a particular result in a measurement.  To do this,
consider how the probability is affected by changing the state ψ  to the state

eiδ ψ .

1.2 Consider a quantum system described by a basis a1 , a2 , and a3 .  The system
is initially in a state

ψi
i

a a= +
3

2
31 2 .

Find the probability that the system is measured to be in the final state

ψ f
i

a a a= + + +1
3

1
6

1
61 2 3 .

1.3 Normalize the following state vectors:

a) ψ = + + −3 4

b) φ = + + −2i

c) γ = + − −π3 3ei

1.4 (Townsend 1.7)   A beam of spin 1/2 particles is sent through a series of three
Stern-Gerlach (SG) measuring devices.  The first SG device is aligned along the
z-axis and transmits particles with   Sz = h / 2 and blocks particles with

  Sz = −h / 2 . The second device is aligned along the n direction and transmits
particles with   Sn = h / 2  and blocks particles with   Sn = −h / 2, where the direction
n makes an angle θ in the x-z plane with respect to the z axis.  Thus particles after
passage through this second device are in the state
+ = ( ) + + ( ) −n cos sinθ θ2 2 .  A third SG device is aligned along the z-axis

and transmits particles with   Sz = −h / 2  and blocks particles with   Sz = h / 2.

a) What fraction of the particles transmitted through the first SG device will
survive the third measurement?

b) How must the angle θ of the second SG device be oriented so as to maximize
the number of particles that are transmitted by the final SG device?  What
fraction of the particles survive the third measurement for this value of θ?



Chap. 1  Stern-Gerlach Experiments

12/19/02

24

c) What fraction of the particles survive the last measurement if the second SG
device is simply removed from the experiment?

1.5 Consider the three quantum states:

ψ

ψ

ψ

1

2

3

4

1
3

2
3

1
5

2
5

1
2 2

= + + −

= + − −

= + + −
π

i

ei

Use bra and ket notation (not matrix notation) to solve the following problems.
Note that + + =1, − − =1, and + − = 0.

a) For each of the ψi  above, find the normalized vector φi  that is orthogonal
to it.

b) Calculate the inner products ψ ψi j  for i and j = 1, 2, 3.
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Chapter 2 OPERATORS AND MEASUREMENT
Up until now we have used the results of experiments, both the measured

quantities and their probabilities, to deduce mathematical descriptions of the spin 1/2
system in terms of the basis kets of the spin projection observables.  For a complete
theory, we want to be able to predict the possible values of the measured quantities and
the probabilities of measuring them in any specific experiment.  In order to do this, we
need to learn about the operators of quantum mechanics.

2.1 Operators
In quantum mechanics, physical observables are represented by mathematical

operators (postulate 2, repeated below) in the same sense that quantum states are
represented by mathematical vectors or kets (postulate 1).  An operator is a mathematical
object that acts or operates on a ket and transforms it into a new ket, for example
A ψ φ= .  However, there are special kets that are not changed by the operation of a
particular operator, aside from a multiplicative constant, which we saw before does not
change anything measurable about the state.  An example of this would be A aψ ψ= .
Such kets are known as eigenvectors of the operator A and the multiplicative constants
are known as the eigenvalues of the operator.  These are important because postulate 3
(repeated below) postulates that the only possible result of a measurement of a physical
observable is one of the eigenvalues of the corresponding operator.

Postulate 2
A physical observable is described mathematically by an operator A

that acts on kets.

Postulate 3
The only possible result of a measurement of an observable is one of

the eigenvalues an of the corresponding operator A.

Given these postulates and the experimental results of Chap. 1, we can write the
eigenvalue equations for the Sz operator:

  

S

S

z

z

+ = +

− = − −

h

h

2

2

, (2.1)

which mean that   +h 2  is the eigenvalue of Sz corresponding to the eigenvector +  and

  −h 2  is the eigenvalue of Sz corresponding to the eigenvector − .  (Though it is
common in some texts, in this text we do not use different symbols for an observable and
its corresponding operator; it is generally obvious from the context which is being used.)
Equations (2.1) are sufficient to define how the Sz operator acts on kets.  However, it is
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useful to use matrix notation to represent operators in the same way as we did earlier with
bras and kets.  In order for Eqs. (2.1) to be satisfied using matrix algebra, the operator Sz

must be represented by a 2 2×  matrix.  The eigenvalue equations (Eqs. (2.1)) provide
sufficient information to determine this matrix.  Let the matrix representing the operator
Sz have the form

S
a b

c dz   = 





• (2.2)

and write the eigenvalue equations in matrix form:

  

a b

c d

a b

c d












= + 
















= − 





1

0 2

1

0

0

1 2

0

1

h

h
, (2.3)

where we are still using the convention that the ±  kets are used as the basis for the
representation.  It is crucial that the rows and columns of the operator matrix are ordered
in the same manner as used for the ket column vectors; anything else would amount to
nonsense.  Multiplying these out yields

  

a

c

b

d







= + 











= − 





h

h

2

1

0

2

0

1

, (2.4)

which results in

  

a b

c d

= + =

= = −

h

h

2
0

0
2

                      

                          
. (2.5)

Thus the matrix representation of the operator Sz is

  

Sz   

 
2

=
−







=
−







•

•

h

h

h

2 0

0 2

1 0

0 1

. (2.6)

Note two important features of this matrix: (1) it only has diagonal elements and (2) the
diagonal elements are the eigenvalues of the operator, ordered in the same manner as the
corresponding eigenvectors.  In this example, the basis used for the matrix representation
is that formed by the eigenvectors of the operator Sz.  That the matrix representation of
the operator in this case is a diagonal matrix is a necessary and general result of linear
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algebra that will prove valuable as we study quantum mechanics.  In simple terms, we
can say that an operator is always diagonal in its own basis.

Now consider how matrix representation works in general.  Consider a general
operator A (still in the two-dimensional spin 1/2 system), which we represent by the
matrix

A
a b

c d
  = 





• (2.7)

in the Sz basis.  The operation of A on the basis ket +  yields

A
a b

c d

a

c
+ = 










= 





•  
1

0
. (2.8)

The inner product of this new ket with the ket +  results in

+ + =( )





=A
a

c
a1 0 , (2.9)

which serves to isolate one of the elements of the matrix.  Hence an individual element
such as + +A  is generally referred to as a matrix element.  Similarly, all four elements
of the matrix representation of A can be determined in this manner, with the final result

A
A A

A A
  =

+ + + −
− + − −







• . (2.10)

In a more general problem with more than 2 dimensions in the complex vector space, one
would write the matrix as

  

A

A A A

A A A

A A A
  =



















•

11 12 13

21 22 23

31 32 33

L

L

L

M M M O

, (2.11)

where

A i A jij = (2.12)

and the basis is assumed to be the states labeled i , with the subscripts i and j labeling
the rows and columns respectively.

In the case of the operator Sz above, we used the experimental results and the
eigenvalue equations to find the matrix representation of the operator.  It is more
common to work the other way.  That is, one is given the matrix representation of an
operator and is asked to find the possible results of a measurement of the corresponding
observable.  According to the 3rd postulate, the possible results are the eignevalues of the
operator, and the eigenvectors are the quantum states representing them.  In the case of a
general operator A in a two-state system, the eigenvalue equation would be
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A a a ai i i= , (2.13)

where we have labeled the eigenvalues ai and have labeled the eigenvectors with the
corresponding eigenvalues.  In matrix notation, this equation is

A A

A A

c

c
a

c

c
i

i
i

i

i

11 12

21 22

1

2

1

2












=






,

,

,

,
, (2.14)

where c1,i and c2,i are the unknown coefficients of the eigenvectors.  This matrix equation
yields the set of homogeneous equations

A a c A c

A a c A c

i i i

i i i

11 1 12 2

21 1 22 2

0

0

−( ) + =

−( ) + =
, ,

, ,

. (2.15)

This set of homogeneous equations will have solutions for the unknowns c1,i and c2,i only
if the determinant of the coefficients vanishes:

A a A

A A a
i

i

11 12

21 22
0

−
−

= . (2.16)

It is common notation to use the symbol λ  for the eigenvalues, in which case this
equation can be written as

det A I−( ) =λ 0, (2.17)

where I is the identity matrix

I = 





1 0

0 1
. (2.18)

Equation (2.17) is known as the secular or characteristic equation.  It is a second order
equation in the parameter λ and the two roots are identified as the two eigenvalues a1 and
a2 we are trying to find.  Once those eigenvalues are found, they are individually
substituted back into Eqs. (2.15), which are solved to find the coefficients of the
corresponding eigenvector.

As an example, assume that we know the matrix representation for the operator Sy

(e.g., from Problem 2.1) and we wish to find the eigenvalues and eigenvectors.  The
general eigenvalue equation can be written as

Sy ψ λ ψ= (2.19)

and the possible eigenvalues λ are then found using the secular equation

det S Iy − =λ 0. (2.20)

The matrix for the operator Sy is

  
S

i

iy  
2

=
−





• h 0

0
(2.21)
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which leads to the secular equation

  

− −

−
=

λ

λ

i

i

h

h
2

2

0. (2.22)

Solving this equation yields

  

λ

λ

λ

λ

2 2
2

2
2

2
2

0

0

+ 



 =

− 



 =

= 





= ±

i
h

h

h

h

2

2

2

2

, (2.23)

which was to be expected, since we know that the only possible results of a measurement
of the spin projection along any axis are   ±h 2 .  As before, we label the eigenvectors
± y .  The eigenvalue equation for the positive eigenvalue can then written as

  
Sy y y+ = + +h

2
(2.24)

or in matrix notation as

  

h h

2

0

0 2

−










= + 





i

i

a

b

a

b
, (2.25)

where we must solve for a and b to determine the eigenvector.  Multiplying through and
cancelling the common factor yields

−





= 





ib

ia

a

b
. (2.26)

This results in two equations, but they are not linearly independent.  So to solve for both
coefficients, we recall that the ket must be normalized.  Thus we have 2 equations to
solve:

b ia

a b

=

+ =2 2 1
. (2.27)

Solving these yields

a ia

a

2 2

2 1
2

1+ =

=
. (2.28)



Chap. 2  Operators and Measurement

12/19/02

30

Again we follow the convention of choosing the first coefficient to be real and positive,
resulting in

a

b i

=

=

1
2

1
2

. (2.29)

Thus the eigenvector corresponding to the positive eigenvalue is

+ = 





•
y i
  

11
2

. (2.30)

Likewise, one can find the eigenvector for the negative eigenvalue to be

− =
−







•
y i
   

11
2

. (2.31)

This procedure of finding the eigenvalues and eigenvectors of a matrix is known
as diagonalization of the matrix.  However, we stop short of the mathematical exercise
of finding the matrix that transforms the original matrix to its diagonal form.  In this case,
the Sy matrix is not diagonal, while the Sz matrix is diagonal, since we are using the Sz

basis.  It is common practice to use the Sz basis as the default basis, so you can assume
that is the case unless you are told otherwise.

2.1.1 Spin Projection in General Direction

We now know the eigenvalues and eigenvectors of each of the three operators
corresponding to the spin projections along the axes of a coordinate system.  It is also
useful to discuss the operator for spin projection along a general direction n̂, which is
specified by the polar and azimuthal angles θ and φ as shown in Fig. 2.1.  The unit vector
can be written as

ˆ ˆsin cos ˆsin sin ˆ cosn i j k= + +θ φ θ φ θ. (2.32)

n

y

z

x

φ

θ

Figure 2.1.  General direction along which to measure spin projection.
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The spin projection along this direction is given by

S

S S S
n

x y z

= •
= + +

S n̂

sin cos sin sin cosθ φ θ φ θ
(2.33)

and has a matrix representation

  

S
e

e
n

i

i  =
−







•
−h

2

cos sin

sin cos

θ θ
θ θ

φ

φ . (2.34)

Following the same diagonalization procedure used above for the Sy matrix, we find that
the eigenvalues of Sn are   ±h 2  as we expect.  The eigenvectors are

+ = + + −

− = + − −

n
i

n
i

e

e

cos sin

sin cos

θ θ

θ θ

φ

φ

2 2

2 2

, (2.35)

where we again use the convention of choosing the first coefficient to be real and
positive.  It is important to point out that the + n  eigenstate (or equivalently the − n
eigenstate) can be used to represent any possible ket in a spin 1/2 system, if one allows
for all possible angles 0 ≤ < πθ  and 0 2≤ < πφ .  We generally write the most general
state as ψ = + + −a b , where a and b are complex.  Requiring that the state be
normalized and using the freedom to choose the first coefficient real and positive reduces
this to

ψ φ= + + − −a a ei1 2 . (2.36)

If we change the parametrization of a  to cos θ 2( ), we see that + n  is equivalent to the
most general state ψ .  This correspondence between the + n  eigenstate and the most
general state is only valid in a two-state system such as spin 1/2.  In systems with more
dimensionality, it does not hold since more parameters are needed to specify the most
general state than are afforded by the angles θ and φ.

2.1.2 Hermitian Operators

So far we have only discussed how operators act upon kets.  An operator acts on a
bra from the right side

ξ ψ= A (2.37)

and the result is another bra.  If the operator A acting on the ket ψ  yields the ket
φ ψ= A , then the bra ξ  defined above is not the bra corresponding to the ket φ .

Rather the bra φ  is found by defining a new operator A+  that obeys

φ ψ= +A . (2.38)

This new operator is called the Hermitian adjoint  of the operator A.  We can learn
something about such an operator by calculating its matrix elements
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φ β β φ

ψ β β ψ

ψ β β ψ

=

[ ] = [ ]
=

+

+

*

*

*

A A

A A

, (2.39)

which tells us that the matrix representing the Hermitian adjoint A+  is found by
transposing and complex conjugating the matrix representing A.  This is consistent with
the definition of Hermitian adjoint used in matrix algebra.

An operator A is said to be Hermitian  if it is equal to its Hermitian adjoint A+ .
In quantum mechanics all operators that correspond to physical observables are
Hermitian.  This is important in light of two features of Hermitian matrices.
(1) Hermitian matrices have real eigenvalues, which ensures that results of measurements
are always real.  (2) The eigenvectors of a Hermitian matrix comprise a complete set of
basis states, which ensures that we can use the eigenvectors of any observable as a valid
basis.

2.1.3 Projection Operators

For this simple spin 1/2 system, we now know four operators: Sx, Sy, Sz, and Sn.
Let's look for some other operators.  Consider the ket ψ  written in terms of its
coefficients in the Sz basis

ψ ψ ψ

ψ ψ

ψ

= + + + − −

= + + + − −

= + + + − −[ ]
. (2.40)

The term in brackets is an operator since it acts on a ket to produce another ket.  Since the
result is the same as the original ket, the operator must be the identity operator.  This
relationship is often written as

+ + + − − = 1, (2.41)

and is generally known as the completeness relation or closure.  It expresses the fact
that the basis states ±  comprise a complete set of states, meaning any arbitrary ket can
be written in terms of them.  Note that each piece of this new operator is a product of a
ket and a bra, but in the opposite order compared to the inner product defined earlier.
This new object is known as an outer product.  To make it obvious that such an object is
an operator, it is useful to express this new operator in matrix notation using standard
rules of matrix multiplication.  Thus we get
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+ + + − − = 




( ) + 




( )

= 





+ 





= 





•

•

•

  

  

  

1

0
1 0

0

1
0 1

1 0

0 0

0 0

0 1

1 0

0 1

, (2.42)

which makes it clear that this operator is the identity operator.
Now consider breaking this new operator into its constituent pieces, of which

there are only two in the spin 1/2 case.  These operators are called projection operators,
and for spin 1/2 are given by

P

P

+
•

−
•

= + + = 





= − − = 





  

  

1 0

0 0

0 0

0 1

. (2.43)

In terms of these new operators the completeness relation can also be written as

P P+ −+ =1. (2.44)

When a projection operator for a particular eigenstate acts on a state ψ , it produces a
new ket that is aligned along the eigenstate and has a magnitude equal to the amplitude
(including the phase) for the state ψ  to be in that eigenstate.  For example,

P

P

+

−

= + + = +( ) +

= − − = −( ) −

ψ ψ ψ

ψ ψ ψ
. (2.45)

Note also that a projector acting on its own eigenstate results in the eigenstate, and a
projector acting on an orthogonal state results in zero:

P

P
+

−

+ = + + + = +
+ = − − + =0

. (2.46)

Since the projection operator produces the probability amplitude, we expect that it must
be intimately tied to measurement in quantum mechanics.

We saw in Chap. 1 that the probability of a measurement is given by the square of
the inner product of initial and final states (postulate 4).  Using our new projection
operators, we can rewrite the probability as

  

P( )

*

+ = +

= + +

= + +

= +

ψ

ψ ψ

ψ ψ

ψ ψ

2

P

. (2.47)
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Thus we can say that the probability can be calculated as a matrix element of the
projection operator, using the input state and the projector corresponding to the result.

The other important aspect of quantum measurement that we learned in Chap. 1
was that the measurement perturbs the system.  That is, if an input state ψ  is measured
to have   Sz = +h 2, then the output state is no longer ψ , but is changed to + .  We saw
above that the projection operator does this operation for us, with a multiplicative
constant of the probability amplitude.  Thus if we divide by this amplitude, which is the
square root of the probability, then we can describe the abrupt change of the input state as

′ = = ++

+
ψ

ψ
ψ ψ
P

P
, (2.48)

where ′ψ  is the output state.  This effect is described by the fifth postulate, which is
repeated below and is often referred to as the projection postulate.

The projection postulate is at the heart of quantum measurement.  This effect is
often referred to as the collapse (or reduction or projection) of the quantum state vector.
We do not attempt to explain the mechanism for this collapse.  This effect has been the
source of much of the controversy surrounding quantum mechanics.  It clearly states that
quantum measurements cannot be made without disturbing the system (except in the case
where the input state is the same as the output state), in sharp contrast to classical
measurements.   This collapse of the quantum state makes quantum mechanics
irreversible, again in contrast to classical mechanics.  We will have more to say about the
collapse later.

Postulate 5
After a measurement of A that yields the result an, the quantum system

is in a new state that is the normalized projection of the original
system ket onto the ket (or kets) corresponding to the result of the

measurement:

′ =ψ
ψ

ψ ψ
P

P
n

n

.

2.1.4 Analysis of Experiments 3 and 4

We can now return to Experiments 3 and 4 from Chap. 1 and analyze them with
these new tools.  Recall that Experiment 3 is the same as Experiment 4a, and
Experiments 4a and 4b are similar in that they each use only one of the output ports of the
second Stern-Gerlach analyzer as input to the third.  Figure 2.2 depicts these experiments
again, with Fig. 2.2(a) showing a hybrid experiment that is essentially Experiment 4a in
its upper half and Experiment 4b in its lower half, and Fig. 2.2(b) showing Experiment
4c.  As before, it is useful here to discuss the probability that an atom leaving the first
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analyzer in the +  state is detected in one of the counters connected to the output ports of
the third analyzer.  Such a probability involves two measurement processes at the second
and third analyzers.  The total probability is the product of the individual probabilities of
each measurement process.

For the hybrid experiment shown in Fig. 2.2(a), the probability of measuring an
atom at the top most counter is the probability of measuring   Sx = +h 2 at the second

analyzer, x + + 2
, times the probability of measuring   Sz = +h 2 at the third analyzer,

+ + x
2
, giving

  Pupper +( ) = + + + +x x
2 2

. (2.49)

Likewise the probability of measuring the atom to have   Sx = +h 2 and then   Sz = −h 2 is

  Pupper −( ) = − + + +x x
2 2

, (2.50)

where we have written the product so as to be read from right to left as is the usual
practice with quantum mechanical amplitudes and probabilities.  For atoms that take the
lower path from the second analyzer, the final probabilities are

  

P

P

lower

lower

+( ) = + − − +

−( ) = − − − +

x x

x x

2 2

2 2
. (2.51)
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Figure 2.2.  (a) Hybrid Experiment 4a and 4b, and (b) Experiment 4c.
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For Experiment 4c, shown in Fig. 2.2(b), we have a new situation at the second
analyzer.  Both output ports are connected to the third analyzer, which means that the
probability of an atom from the first analyzer being input to the third analyzer is 100%.
So we need only calculate the probability of passage through the third analyzer.  The
crucial step is determining the input state, for which we use the projection postulate.
Since both states are used, the relevant projection operator is the sum of the two
projection operators for each port, P Px x+ −+ , where P x x x+ = + +  and P x x x− = − − .
Thus the state after the second analyzer is

ψ
ψ

ψ ψ
2

1

1 1

=
+( )

+( )

=
+( ) +

+ +( ) +

+ −

+ −

+ −

+ −

P P

P P

P P

P P

x x

x x

x x

x x

. (2.52)

In this simple example, the projector P Px x+ −+  is equal to the identity operator since the
two states form a complete basis.  This clearly simplifies the calculation, giving
ψ2 = + , but in order to illustrate our point let's only simplify the denominator (which

equals one), giving

ψ2 = + + + − −( ) +

= + + + + − − +
x x x x

x x x x

. (2.53)

Thus the beam entering the third analyzer can be viewed as a coherent superposition of
the eigenstates of the second analyzer.  Now calculate the probability of measuring spin
up at the third analyzer:

  

P +( ) = +

= + + + + + + − − +

ψ2
2

2
x x x x

. (2.54)

The probability of measuring spin down at the third analyzer is similarly

  

P −( ) = −

= − + + + + − − − +

ψ2
2

2
x x x x

. (2.55)

In each case, the probability is a square of a sum of amplitudes, each amplitude being the
amplitude for a successive pair of measurements.  For example, in   P −( ) the amplitude
− + + +x x  refers to the upper path that the initial +  state takes as it is first measured

to be in the + x  state, and then measured to be in the −  state (read from right to left).
This amplitude is added to the amplitude for the lower path since the beams of the second
analyzer are combined, in the proper fashion, to create the input beam to the third
analyzer.  When the sum of amplitudes is squared, four terms are obtained, two squares
and two cross terms, giving
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P

P P

−( ) = − + + + + − − − +

+ − + + + − − − +

+ − + + + − − − +

= −( ) + −( ) +

x x x x

x x x x

x x x x

2 2

* *

* *

upper lower interference terms

. (2.56)

This tells us that the probability of detecting an atom to have spin down when both paths
are used is the sum of the probabilities for detecting a spin down atom when either the
upper path or the lower path is used alone plus additional cross terms involving both
amplitudes, which are commonly called interference terms.  It is these additional terms,
which are not positive definite, that allow the total probability to become zero in this
case, illustrating the phenomenon of interference.

This interference arises from the nature of the superposition of states that is input
to the third analyzer. To illustrate this, consider what happens if we change the
superposition to a mixture as we discussed previously (Sec. 1.3.3).  Recall that a
superposition implies a beam with each atom in the same state, which is a combination of
states, while a mixture implies that the beam consists of atoms in separate states.  As we
have described it so far, Experiment 4c involves a superposition as input to the third
analyzer.  We can change this to a mixture by "watching" to see which of the two output
ports of the second analyzer each atom travels through.  There are a variety of ways to
imagine doing this experimentally.  The usual idea proposed is to illuminate the paths
with light and watch for the scattered light from the atoms.  With proper design of the
optics, the light can be localized sufficiently to determine which path the atom takes.
Hence, such experiments are generally referred to as "Which Path" or "Welcher Weg"
experiments.  Such experiments can be performed in SPINS by selecting the Watch
feature.  Since we know which path the atom takes, the state is not the superposition ψ2
described above, but is either + x  or − x , depending on which path produces the light
signal.  To find the probability that atoms are detected at the spin down counter of the
third analyzer, we add the probabilities for atoms to follow the path + → + → −x  to
the probability for other atoms to follow the path + → − → −x  since these are
independent events, giving

  

P

P P
watch

upper lower

−( ) = − + + + + − − − +

= −( ) + −( )
x x x x

2 2

, (2.57)

in which no interference terms are present.
This again illustrates the important distinction between a coherent superposition

and a statistical mixture.  In a coherent superposition, there is a definite relative phase
between the different states, which can give rise to interference effects that are dependent
on that phase.  In a statistical mixture, the phase relationship between the states has been
destroyed and the interference is washed out.  Now we can understand what it takes to
have the beams "properly" combined after the second analyzer of Experiment 4c.  The
relative phases of the two paths must be preserved.  Anything that randomizes the phase
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is equivalent to destroying the superposition and leaving only a statistical mixture.  If the
beams are properly combined to leave the superposition intact, the results of Experiment
4c are the same as if no measurement was made at the second analyzer.  So even though
we have used a measuring device in the middle of Experiment 4c, we generally say that
no measurement was made there.  We can summarize our conclusions by saying that if no
measurement is made at the intermediate state, then we add amplitudes and then square to
find the probability, while if an intermediate measurement is performed (i.e., watching),
then we square the amplitudes first and then add to find the probability.  One is the square
of a sum and the other is the sum of squares, and only the former exhibits interference.

2.2 Measurement
Consider now how the probabilistic nature of quantum mechanics affects the way

experiments are performed and compared with theory.  In classical physics, a theoretical
prediction can be reliably compared to a single experimental result.  For example, a
prediction of the range of a projectile can be tested by doing an experiment.  The
experiment may be repeated several times in order to understand and possibly reduce any
systematic errors (e.g. wind) and measurement errors (e.g misreading tape measure).  In
quantum mechanics, a single measurement is meaningless.  If we measure an atom to
have spin up in a Stern-Gerlach analyzer, we cannot discern whether the original state
was +  or − x  or any arbitrary state ψ  (except − ).  Moreover, we cannot repeat the
measurement on the same atom, since the original measurement changed the state, per the
projection postulate.

Thus, one must, by necessity, perform identical measurements on identically
prepared systems.  In the spin 1/2 example, an initial Stern-Gerlach analyzer is used to
prepare atoms in a particular state ψ .  Then a second Stern-Gerlach analyzer is used to
perform the same experiment on each identically prepared atom.  Consider performing a
measurement of Sz on N identically prepared atoms.  Let N+ be the number of times the
result   +h 2  is recorded and N- be the number of times the result   −h 2  is recorded.  Since
there are only two possible results for each measurement, we must have N = N+ + N-.
The probability postulate (postulate 4) predicts that the probability of measuring   +h 2  is

  P( )+ = + ψ 2
. (2.58)

For a finite number N of atoms, we expect that N+ is only approximately equal to   P( )+ N
due to the statistical fluctuations inherent in a random process (see Appendix A).  Only in
the limit of an infinite number N do we expect exact agreement:

  
lim ( )

N

N

N→∞
+ = + = +P ψ 2

. (2.59)

As with any data set, it is useful to characterize it in terms of the mean and
standard deviation.  Quantum mechanics predicts a mean value given by the sum of the
products of each possible result and its probability:
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Sz = + + + −



 −h h

2 2
P P( ) ( ), (2.60)

which can be rewritten as

  

S

S S

S

S

z

z z

z

z

= + + + −



 −

= + + + + −



 − −

= + + + + −



 − −





= + + + − −[ ]
= + + + − −[ ]
=

h h

h h

h h

2 2

2 2

2 2

2 2ψ ψ

ψ ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

ψ ψ

ψ ψ

. (2.61)

This is commonly called the expectation value, but it is not the expected value of any
single experiment, but rather the expected mean value of a large number of experiments.
It is not a time average, but rather an average over many identical experiments.

To see how this applies to our study of spin 1/2 systems, consider two examples.
First consider a system prepared in the state + .  The expectation value of Sz is given by

  

S Sz z= + +

= + +

= + +

=

h

h

h

2

2

2

. (2.62)

Since   +h 2  is the only possible result of a measurement of Sz for this state, this must be
the expectation value.  Next consider a system prepared in the state + x .  In this case the
expectation value is

  

S Sz x z x= + +

= ( )
−













= ( )
−







=

1
2

1
2

1 1
2

1 0

0 1

1

1

4
1 1

1

1

0

h

h
. (2.63)

Here the two possible results   ±h 2  each have 50% probability, so the average result is
zero.
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In addition to the mean value, it is common to characterize a measurement by the
standard deviation, which quantifies the spread of measurements about the mean or
expectation value.  By the way a mean is defined, the deviations from the mean are
equally distributed above and below the mean in such a way that the average of the
deviations is zero.  Thus it is common to define the standard deviation as the square root
of the mean of the square of the deviations.  By squaring the deviations, they can be
averaged meaningfully, and then the square root is taken to arrive back at a measure of
the "average" deviation.  For a measurement of an observable A, the standard deviation is
defined as

∆A A A= −( )2 , (2.64)

where the angle brackets signify average value as used in the definition of an expectation
value. This result is also often called the root-mean-square deviation, or r.m.s.
deviation.   This expression can be simplified by expanding the square and performing
the averages, resulting in

∆A A A A A

A A A A

A A

= − +( )
= − +

= −

2 2

2 2

2 2

2

2 , (2.65)

where one must be clear to distinguish between the square of the mean and the mean of
the square.  While the mean of the square may not be a common experimental quantity, it
can be calculated using its definition

A A2 2= ψ ψ . (2.66)

To gain experience with the standard deviation, return to the two examples used above.
To calculate the standard deviation, we first need to find the mean of the square of the
operator Sz.  In the first case (+  initial state), we get

  

S Sz z
2 2

2

2

2

2

= + +

= + 



 +

= 





h

h

. (2.67)

This gives a standard deviation of
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∆S S Sz z z= −

= 



 − 





=

2 2

2 2

2 2

0

h h
, (2.68)

which is to be expected since there is only one possible result, and hence no spread in the
results of the measurement, as shown in Fig. 2.3(a).  In the second case (+ x  initial
state), we get

  

S Sz x z x
2 2

1
2

1
2

1
2

2

1
2

2

1 1
2

1 0

0 1 2

1 0

0 1
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
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
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
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
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
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= 



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h

h

h 22

. (2.69)

This gives a standard deviation of

 

  

∆S S Sz z z= −

= 



 −

=

2 2

2

2
0

2

h

h

(2.70)

Figure 2.3.  Idealized measurements of Sz with (a) +  input state and (b) with + x  input state.
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Again this makes sense since each measurement deviates from the mean (0) by the same
value of   h 2, as shown in Fig. 2.3(b).

The standard deviation ∆A represents the uncertainty in the results of an
experiment.  In quantum mechanics, this uncertainty is fundamental, meaning that you
cannot design the experiment any better to improve the result.  What we have calculated
then, is the minimum uncertainty allowed by quantum mechanics.  Any actual uncertainty
may be larger due to experimental error.  This is another ramification of the probabilistic
nature of quantum mechanics.

2.3 Commuting Observables
We saw in Experiment 2 that two incompatible observables could not be known

or measured simultaneously, since measurement of one somehow erased the knowledge
of the other.  Let us now explore more about what it means for two observables to be
incompatible and how that affects the results of measurements.  First we need to define a
new object called a commutator.  The commutator of two operators is defined as

[ , ]A B AB BA= − . (2.71)

If the commutator is equal to zero, we say that the operators or observables commute; if
it is not zero, we say they don't commute.  Now consider what happens when two
operators A and B do commute:

[ , ]A B

AB BA

AB BA

=
− =

=

0

0 . (2.72)

Thus for commuting operators, the order of operation does not matter, whereas it does for
noncommuting operators.  Now let a  be an eigenstate of the operator A with eigenvalue
a:

A a a a= . (2.73)

Operate on both sides of this equation with the operator B and use the fact that A and B
commute:

BA a Ba a

AB a aB a

A B a a B a

=
=

( ) = ( )
. (2.74)

The last equation says that the state B a  is also an eigenstate of the operator A with the
same eigenvalue a.  Assuming that each eigenvalue has a unique eigenstate (which is true
if there is no degeneracy, which we haven't discussed yet), the state B a  must be some
scalar multiple of the state a .  If we call this multiple b, then we can write

B a b a= , (2.75)

which is just an eigenvalue equation for the operator B.  Thus we must conclude that the
state a  is also an eigenstate of the operator B, with the eigenvalue b.  The assumption
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that the operators A and B commute has lead us to the result that A and B have common
or simultaneous sets of eigenstates.

The ramifications of this result for experiments are very important.  Recall that a
measurement of the observable A projects the initial state ψ  onto an eigenstate of A:
a .  A subsequent measurement of the observable B then projects the input state a  onto

an eigenstate of B.  But since the eigenstates of A and B are the same, the second
measurement does not change the state a .  Thus another measurement of A following
the measurement of B yields the same result as the initial measurement of A, as illustrated
in Fig. 2.4.  We say that these two observables can be measured simultaneously, meaning
we can measure one observable without erasing our knowledge of the previous results of
the other observable.  Observables A and B are said to be compatible.

 Conversely, if two operators do not commute, then they are incompatible
observables, and cannot be measured simultaneously.  This is what we saw in
Experiment 2 earlier.  In that case, the two observables were Sx and Sz.  Let's take a look
at their commutator to show that they are not compatible:

  

[ , ]S Sz x   
2 2 2 2

  
2

  
2
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00

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
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=  i Syh

(2.76)

As expected, these two operators do not commute.  None of the spin projection
observables commute with each other.  The complete commutation relations are

  

[ , ]

[ , ]

[ , ]

S S i S

S S i S

S S i S

x y z

y z x

z x y

=

=

=

h

h

h

, (2.77)

which are written to make the cyclic relations clear.
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Figure 2.4.  Successive measurements of commuting observables.
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2.4 Uncertainty Principle
Given this intimate connection between the commutator of two observables and

measurements of the two corresponding observables, it is useful and instructive to also
consider the product of uncertainties or standard deviations of the two observables.  One
can show that this product is related to the commutator:

∆ ∆A B A B≥ 1
2 [ , ] . (2.78)

This is what we call the uncertainty principle  of quantum mechanics.  Consider what it
says about a simple Stern-Gerlach experiment.  The uncertainty principle for the Sx and
Sy spin projections is

  

∆ ∆S S S S

i S

S

x y x y

z

z

≥

≥

≥

1
2

1
2

2

[ , ]

h

h

. (2.79)

If the initial state is + , then a measurement of Sz results in an expectation value

  Sz = h 2  with an uncertainty ∆Sz = 0 .  The product of the other uncertainties in this
case is

  
∆ ∆S Sx y ≥ 





h

2

2

, (2.80)

or simply

∆ ∆S Sx y ≠ 0, (2.81)

which implies that

∆
∆

S

S
x

y

≠
≠

0

0
. (2.82)

The conclusion to draw from this is that while we can know one spin projection
absolutely, we can never know all three, nor even two, simultaneously.  This means that
the spin does not really point in a given direction, as a classical spin or angular
momentum does.  So when we say that we have measured "spin up," we really mean only
that the spin projection along that axis is up, as opposed to down.

2.5 S2 Operator

Another argument to illustrate that the spin does not point along the axis along
which you measure the projection is obtained by considering a new operator that
represents the magnitude of the spin vector but has no information about the direction.  It
is common to use the square of the spin vector for this task.  This new operator can be
written as

S2 2 2 2= + +S S Sx y z , (2.83)
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and can be calculated in the Sz representation as
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. (2.84)

Thus the S2 operator is proportional to the identity operator, which means it must
commute with all the other operators Sx, Sy, and Sz.  This also means that all states are
eigenstates of the S2 operator.  Thus we can write

  
S2 2ψ ψ= 3

4 h (2.85)

for any ψ  in the spin 1/2 system.
To generalize this to other possible spin systems, we need to introduce new labels.

We use the label s to denote the spin of the system, such as spin 1/2, spin 1, spin 3/2.  In
each of these cases, a measurement of a spin projection along any axis yields results
ranging from a maximum value of   sh  to a minimum value of   −sh , in unit steps of the
value   h .  We denote the possible values of the spin projection along the z-axis by m, the
integer or half-integer multiplying   h .  A quantum state with specific values of s and m is
denoted as s m, , yielding the eigenvalue equations

  

S2 21s m s s m

S s m m s mz

, ,

, ,

= +( )
=

s h

h
. (2.86)

The connection between this new notation and our previous spin 1/2 notation is

1
2

1
2

1
2

1
2

,

,

= +

− = −
. (2.87)

We will continue to use the previous notation.  We will discuss the spin 1 case below.
For the case of spin 1/2, note that the expectation value of the operator S2 is

  
S2 2= 3

4 h , (2.88)

which would imply that the "length" of the spin vector is

  
S2 3

2
= h

. (2.89)

This is appreciably longer than the measured projection of   h 2, implying that the spin
vector can never be fully aligned along any axis.

The spin 1/2 system we have discussed up to this point is the simplest quantum
mechanical system.  There are other two-level systems based upon other physical
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systems, but they are mathematically equivalent to the two-state spin 1/2 system we have
explored.  The next simplest system is the spin 1 or three-level system.

2.6 Spin 1 System
The Stern-Gerlach experiment depicted in Fig. 1.1 can be performed on a variety

of atoms or particles.  Such experiments always result in a finite number of discrete
beams exiting the analyzer magnet.  For the case of three output beams, the deflections
are consistent with magnetic moments arising from spin angular momentum projections
of   h , 0, and   −h .  These results imply that the spin projection quantum numbers m are 1,
0 and –1 and the spin quantum number s = 1.  This is what we call a spin 1 system.  A
schematic diagram of the experiment is shown in Fig. 2.5.  Using our notation from
above, the quantum state corresponding to the state with spin projection   h  along the z-
axis is labeled

s m= = =1 1 1 1, , . (2.90)

 When dealing with a spin 1 system by itself, we will simply denote this state as 1  since
the value s is understood.  Thus we are lead to the three eigenvalue equations for the
operator Sz

  

S

S

S

z

z

z

1 1

0 0

1 1

=
=

− = − −

h

h

. (2.91)

As we did in the spin 1/2 case, we commonly choose the Sz basis as the standard basis in
which to express operators and kets using matrix representation.  We thus have

0

0

|1〉

|−1〉

Z 0
|0〉

0

Figure 2.5.  Spin 1 Stern-Gerlach experiment.
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Sz   

1 0 0

0 0 0

0 0

=
−















• h
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, (2.92)

where we again use the convention that the ordering of the rows and columns follows the
eigenvalues in descending order.  The eigenvectors of the Sz operator are

1

1

0

0

0

0

1

0

1

0

0

1

                          =














=














− =














• • • . (2.93)

The same four experiments performed on the spin 1/2 system can be performed
on a spin 1 system.  Conceptually the results are the same.  One important difference
occurs in experiment 2, where a measurement of Sz is first performed to prepare a
particular state, and then a subsequent measurement of Sx (or Sy) is performed.  Based
upon the results of the spin 1/2 experiment, one might expect each of the possible
projections to have 1/3 probability.  Such is not the case.  Rather one set of results is
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, (2.94)

as illustrated in Fig. 2.6.  This results can be used to determine the Sx eigenstates in terms
of the Sz basis:
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Likewise, we can find the Sy eigenstates:
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Problems

 2.1. Given the following information:

  
Sx x x± = ± ±h

2   
Sy y y± = ± ±h

2

± = + ± −[ ]x
1
2

± = + ± −[ ]y i
1
2

find the matrix representations of Sx and Sy in the Sz basis.

2.2. Find the matrix representation of Sz in the Sx basis, for spin 1/2.  Diagonalize this
matrix to find the eigenvalues and the eigenvectors in this basis.

2.3. Calculate the commutators of the spin 1/2 operators Sx, Sy, and Sz.

2.4. In part (1) of SPINS Lab #2, you measured the probabilities that each of the
unknown initial states ψi  (i = 1, 2, 3, 4) was measured to be in one of the six
spin eigenstates ± , ± x , and ± y .  Using your measured values, deduce the
unknown initial states (write each of them using the ±  basis).  In each case, use
your result to calculate the theoretical values of the probabilities for each
projection measurement and compare with your experimental results.  Discuss the
experiments you did to confirm your results for ψ3  and ψ4 .

25

25

|1〉x

X 0
50

|1〉

|0〉x

|−1〉x

Z 0

Figure 2.6.  Experiment 2 in the spin 1 case.
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2.5. Consider a three dimensional ket space.  In the basis defined by three orthogonal
kets 1 , 2 , and 3 , the operators A and B are represented by

A

a

a

a

  =














•
1

2

3

0 0

0 0

0 0

B

b

b

b

  =














•
1

2

2

0 0

0 0

0 0

,

where all the quantities are real.

a) Do the operators A and B commute?

b) Find the eigenvalues and normalized eigenvectors of both operators.

c) Assume the system is initially in the state 2 .  Then the observable
corresponding to the operator B is measured.  What are the possible results of
this measurement and the probabilities of each result?  After this
measurement, the observable corresponding to the operator A is measured.
What are the possible results of this measurement and the probabilities of each
result?

d) How are questions (a) and (c) above related?

2.6. (Townsend 3.17)  A spin-1 particle is in the state

ψ   =














• 1
14

1

2

3i

a) What are the probabilities that a measurement of Sz will yield the values

  h h,  0,  −  for this state?  What is Sz ?

b) What is Sx  for this state?  Suggestion: Use matrix mechanics to evaluate the
expectation value.

c) What is the probability that a measurement of Sx will yield the value   h  for this
state?

2.7. In part (2) of SPINS Lab #3, you measured the spin projections of the unknown
(spin 1) initial states ψi  (i = 1, 2, 3, 4) onto the nine spin eigenstates along the
three axes.  Using your measured values, deduce the unknown initial states.
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Chapter 3 SCHRÖDINGER TIME EVOLUTION

3.1 Schrödinger Equation
The 6th postulate of quantum mechanics says that the time evolution of a quantum

system is governed by the equation

  
i

d

dt
t H t th ψ ψ( ) = ( ) ( ) , (3.1)

where the operator H corresponds to the total energy of the system and is called the
Hamiltonian operator of the system since it is derived from the classical Hamiltonian.
This equation is known as the Schrödinger equation.

Postulate 6
The time evolution of a quantum system is determined by the

Hamiltonian or total energy operator H(t) through the Schrödinger
equation

  
i

d

dt
t H t th ψ ψ( ) = ( ) ( ) .

The eigenstates of the Hamiltonian are called the energy eigenstates of the system
and the eigenvalues of H are the allowed energies of the quantum system.  If we label the
allowed energies as Ei, then we can write the eigenvalue equation as

H E E Ei i i= . (3.2)

Since H is an observable, it is an Hermitian operator and its eigenvectors form a complete
basis.  Since H is the only operator appearing in the Schrödinger equation, it would seem
reasonable (and will prove invaluable) to consider the energy eigenstates as the basis of
choice for expanding general state vectors:

ψ = ∑c Ei
i

i . (3.3)

For now assume that the Hamiltonian is time independent (we will do H(t) later).
Then the eigenvectors of H must themselves be time independent.  Thus if a general state
ψ  is to be time dependent, as the Schrödinger equation implies, then the time

dependence must be in the expansion coefficients ci, which we write as ci(t).  A general
time dependent state is then written as

ψ t c t Ei
i

i( ) = ( )∑ . (3.4)

Substitute this state into the Schrödinger equation (Eq. (3.1)) to get
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i
d

dt
c t E H c t E

i
dc t

dt
E c t E E

i
i

i i
i

i

i

i
i i

i
i i

h

h

( ) = ( )

( ) = ( )

∑ ∑

∑ ∑
. (3.5)

Each side of this equation is a sum over all the states of the system.  To simplify this

equation, take the inner product of the ket on each side with the ket Ej .  The

orthonormality condition E Ej i ij= δ  can then be used to collapse the sums:

  

E i
dc t

dt
E E c t E E

i
dc t

dt
E E c t E E E

i
dc t

dt
c t E

i
dc t

dt
c t E

j
i

i
i j i

i
i i

i

i
j i i

i
i j i

i

i
ij i

i
i ij

j
j j

h

h

h

h

( ) = ( )

( ) = ( )

( ) = ( )

( )
= ( )

∑ ∑

∑ ∑

∑ ∑δ δ
. (3.6)

This first-order differential equation can be written as

  

dc t

dt
i

E
c tj j

j
( )

= − ( )
h

(3.7)

and solved to obtain

  
c t c ej j

iE tj( ) = ( ) −
0

h
. (3.8)

In this equation, we have denoted the initial condition as cj(0), but will simply denote it
as cj hereafter.  This solution can be summarized by saying that if the initial state of a
system at time t = 0 is given by

ψ 0( ) = ∑c Ei
i

i , (3.9)

then the time evolution of this state under the action of the time-independent Hamiltonian
H is given by

  

ψ t c e Ei
iE t

i
i

i( ) = −∑ h . (3.10)

So the time dependence of the original state vector is found by simply multiplying
each energy eigenstate coefficient by a phase factor dependent on that energy.  Note that
the factor   E h is an angular frequency, so that the time dependence is of the form e i t− ω

that is common throughout many areas of physics.  It is important to remember that one
must use the energy eigenstates in order to make this simple statement.  This accounts for
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the importance of the Hamiltonian operator and the common practice of using the energy
eigenstates as the basis of choice.

A few simple examples can help to illustrate some of the important consequences
of this time evolution of the quantum mechanical state vector.  First consider the simplest
possible situation where the system is initially in one particular energy eigenstate:

ψ 0 1( ) = E , (3.11)

for example.  The prescription for time evolution tells us that after some time t the system
will be in the state

  ψ t e EiE t( ) = − 1
1

h . (3.12)

But this state differs from the original state only by a phase factor, which we have said
before does not affect any measurements.  For example, if we measure an observable A,
then the probability of measuring an eigenvalue aj is given by

    

P( )a a t

a e E

a E

j j

j
iE t

j

= ( )

=

=

−

ψ
2

1
2

1
2

1 h (3.13)

This probability is time-independent and is equal to the probability at the initial time.
Thus we conclude that there is no measureable time evolution for this state.  Hence the
energy eigenstates are generally called stationary states.  If a system begins in an energy
eigenstate, then it will remain in that state.

Now consider the next simplest situation, wherein the initial state is a
superposition of two energy eigenstates:

ψ 0 1 1 2 2( ) = +c E c E . (3.14)

In this case, time evolution takes the initial state to the later state

  ψ t c e E c e EiE t iE t( ) = +− −
1 1 2 2

1 2h h . (3.15)

A measurement of the system energy at the time t would yield the value E1 with a
probability

    

P( )E E t

E c e E c e E

c

iE t iE t

1 1
2

1 1 1 2 2

2

1
2

1 2

= ( )

= +[ ]
=

− −

ψ

h h (3.16)

which is independent of time.  The same is true for the probability of measuring the
energy E2.  Thus the probabilities of measuring the energies are stationary, as they were
in the first example.
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However, now consider what happens if another observable is measured on this
system in this superposition state.  There are two distinct situations: (1) If the other
observable A commutes with the Hamiltonian H, then A and H have common eigenstates.
In this case, measuring A is equivalent to measuring H since the inner products used to
calculate the probabilities use the same eigenstates.  (2) If A and H do not commute, then
they do not share common eigenstates.  In this case, the eigenstates of A in general
consist of superpositions of energy eigenstates.  For example, suppose that the eigenstate
of A corresponding to the eigenvalue a1 were

a E E1 1 1 2 2= +α α . (3.17)

Then the probability of measuring the eigenvalue a1 would be

    

P( )

* *

* *

* *

a a t

E E c e E c e E

c e c e

c c e

iE t iE t

iE t iE t

i E E t

1 1
2

1 1 2 2 1 1 2 2

2

1 1 2 2
2

1 1 2 2

2

1 2

1 2

2 1

= ( )

= +[ ] +[ ]
= +

= +

− −

− −

− −( )

ψ

α α

α α

α α

h h

h h

h

(3.18)

The differing phases of the two components of ψ t( )  lead to a time dependence in the
probability.  Since only the relative phase is important in the probability calculation, the
time dependence is determined by the difference of the energies of the two states
involved in the superposition.  The corresponding frequency

  
ω21

2 1= −E E

h
(3.19)

is often called the Bohr frequency.
To summarize, we list below a recipe for solving a standard time-dependent

quantum mechanics problem with a time-independent Hamiltonian.

Given a Hamiltonian H and an initial state ψ( )0 , what is the

probability that an is measured at time t?

1. Diagonalize H (find eigenvalues Ei and eigenvectors Ei )

2. Write ψ( )0 in terms of energy eigenstates Ei

3. Multiply each eigenstate coefficient by   e
i
E

ti−
h  to get ψ( )t

4. Calculate probability P a a tn n( ) ( )= ψ
2
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3.2 Spin Precession
Now apply this new concept of Schrödinger time evolution to the case of a spin

1/2 system.  The Hamiltonian represents the total energy of the system, but since only
energy differences are important in time dependent solutions (and since we can define the
zero of potential energy as we wish), we need only consider energy terms that
differentiate between the two possible spin states in the system.  Our experience with the
Stern-Gerlach apparatus tells us that the potential energy of the magnetic dipole differs
for the two possible spin projection states.  So to begin, we will consider the potential
energy of a magnetic dipole in a uniform magnetic field as the sole term in the
Hamiltonian.  Recalling that the magnetic dipole is given by

µµ = g
q

m ce2
S, (3.20)

the Hamiltonian is

H

g
q

m c

e

m c

e

e

= − •

= − •

= •

µµ B

S B

S B

2
, (3.21)

where q = -e and g = 2 have been used in the last line.  The gyromagnetic ratio, g, is
slightly different from 2, but we ignore that for now.

3.2.1 Magnetic Field in z-direction

For our first example we assume that the magnetic field is uniform and directed
along the z-axis.  Writing the magnetic field as

B z= B0ˆ , (3.22)

allows the Hamiltonian to be simplified to

H
eB

m c
S

S
e

z

z

=

=

0

0ω
, (3.23)

where we have introduced the definition

ω0
0≡ eB

m ce
. (3.24)

This definition of an angular frequency simplifies the notation now and will lead to an
obvious interpretation at the end.

Since the Hamiltonian is proportional to the Sz operator, H and Sz commute and
share common eigenstates.  This is clear if we write the Hamiltonian as a matrix in the Sz

representation:
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H   0=

−






• hω
2

1 0

0 1
(3.25)

Since H is diagonal, its eigenstates must be the basis states of the representation, while its
eigenvalues are the diagonal elements of the matrix.  The eigenvalue equations for the
Hamiltonian are then

  

H S E

H S E

z

z

+ = + = +

− = − = − −−

ω ω

ω ω

0
0

+

0
0

+ =  

+ =  

h

h

2

2

(3.26)

with eigenvalues and eigenvectors given by

  

E E

E E

+ −

+ −

= = −

= + = −

h hω ω0 0                     

                      

2 2 (3.27)

Now consider a few examples to illustrate the key features of the behavior of a
spin 1/2 system in a uniform magnetic field.  First consider the case where the initial state
is spin up along z-axis:

ψ 0( ) = + . (3.28)

The Schrödinger equation time evolution takes this to

  

ψ
ω

t e

e

iE t

i t

( ) = +

= +

−

−

+ h

0 2
. (3.29)

As we saw before, since the initial state is an energy eigenstate, the time evolved state
simply has a phase factor in front, which does not represent a physical change of the
state.  The probability for measuring the spin to be up along the z-axis is

  

P( )+ = + ( )

= + +

=

−

ψ

ω

t

e i t

2

2 2
0

1

. (3.30)

As expected, this is not time dependent.  As before, we thus refer to +  as a stationary
state for this system.

Next consider the most general initial state, which we saw earlier corresponds to
spin up along an arbitrary direction.  Thus we will write the initial state as

ψ θ θ φ0
2 2

( ) = + = + + −n
iecos sin (3.31)

or using matrix notation:
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ψ
θ
θφ0
2

2
( ) =

( )
( )







•  
cos

sinei . (3.32)

The time evolution simply introduces a time dependent phase term in each component,
giving

  

ψ
θ
θ

θ
θ

θ

θ

φ

ω

ω φ

ω
φ ω

t
e

e e

e

e e

e
e

iE t

iE t i

i t

i t i

i t
i t

( ) = ( )
( )








= ( )
( )








=
( )

( )







•
−

−

•
−

• −
+( )

+

−
  

  

  

h

h

cos

sin

cos

sin

cos

sin

2

2

2

2

2

2

0

0

0
0

2

2

2

. (3.33)

If we again note that an overall phase does not have measureable effects, then the evolved
state is simply a spin up eigenstate along a direction that has the same polar angle θ and a
new azimuthal angle φ + ω0t.  The state appears to have simply rotated around the z-axis,
the axis of the magnetic field, by the angle ω0t.  Of course, we have to limit our
discussion to results of measurements, so let's calculate the probability for measuring the
spin projection along the z-axis first:

  

P( )

cos

sin

cos

cos

+ = + ( )

= ( ) ( )
( )








= ( )
= ( )

−
+( )

−

ψ

θ

θ

θ

θ

ω
φ ω

ω

t

e
e

e

i t
i t

i t

2

2
2

2 2

2

1 0
2

2

2

2

0
0

0

. (3.34)

This is time independent since the Sz eigenstates are also energy eigenstates for this
problem, and it is consistent with the interpretation that the angle θ that the spin vector
makes with the z-axis does not change.  The probability for measuring spin up along the
x-axis is
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P( )

cos

sin

cos sin

cos cos sin

+ = + ( )

= ( ) ( )
( )








= ( ) + ( )

= ( ) + ( ) ( ) +

−
+( )

+( )

+( ) − +(

x x

i t
i t

i t

i t i t

t

e
e

e

e e

ψ

θ

θ

θ θ

θ θ θ

ω
φ ω

φ ω

φ ω φ ω

2

1
2

2
2

1
2

2

1
2

2

1 1
2

2

2 2

2 2 2

0
0

0

0 0 ))



 + ( )





= + +( )[ ]
sin

sin cos

2

1
2 0

2

1

θ

θ φ ω t

. (3.35)

This is time dependent since the Sx eigenstates are not stationary states.  The time
dependence is consistent with the spin precessing around the z-axis.  To further
demonstrate this it is useful to calculate the expectation values for each of the spin
components.  For Sz, we have

  

S t S t

e e e
e

z z

i t i t i t
i t

= ( ) ( )

= ( ) ( )



 −







( )
( )








= ( ) − ( )[ ]
=

− +( ) −
+( )

ψ ψ

θ θ
θ

θ

θ θ

θ

ω φ ω ω
φ ω

0 0 0
0

2 2

2 2

2 2
2

1 0

0 1

2

2

2
2 2

2

cos sin
cos

sin

cos sin

cos

h

h

h

, (3.36)

while the other components are

  

S t S t

e e e
e

e e

x x

i t i t i t
i t

i t i

= ( ) ( )

= ( ) ( )











( )
( )








= ( ) ( ) +

− +( ) −
+( )

+( ) − +

ψ ψ

θ θ
θ

θ

θ θ

ω φ ω ω
φ ω

φ ω φ

0 0 0
0

0

2 22 2
2

0 1

1 0

2

2

2
2 2

cos sin
cos

sin

cos sin

h

h ωω

θ φ ω

0

2 0

t

t

( )





= +( )h
sin cos

, (3.37)

and
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S t S t

e e
i

i
e

e

ie ie

y y

i t i t i t
i t

i t i

= ( ) ( )

= ( ) ( )





−





( )
( )








= ( ) ( ) − +

− +( ) −
+( )

+( ) −

ψ ψ

θ θ
θ

θ

θ θ

ω φ ω ω
φ ω

φ ω

0 0 0
0

0

2 22 2
2

0

0

2

2

2
2 2

cos sin
cos

sin

cos sin

h

h φφ ω

θ φ ω

+( )





= +( )

0

2 0

t

t
h

sin sin

. (3.38)

The expectation value of the total spin vector S  is shown in Fig 3.1, where it is seen to
precess around the magnetic field direction with an angular frequency ω0.  This
frequency of precession is known as the Larmor frequency.  Classically this is what one
expects when a magnetic moment is placed in a uniform magnetic field.

A classical magnetic moment µµµµ experiences a torque µµ × B when placed in a
magnetic field.  If the magnetic moment is aligned with an angular momentum L , then
we can write

µµ = γL , (3.39)

where γ is the gyromagnetic ratio of the system.  The equation of motion for the angular
momentum

d

dt

L
B= ×µµ (3.40)

then results in

〈S(0)〉
〈S(t)〉

ωt

y

z

x

B

Figure 3.1.  Expectation value of spin in magnetic field.
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d

dt

µµ µµ= ×γ B, (3.41)

Since the torque is perpendicular to the angular momentum, it causes the magnetic
moment to precess about the field with an angular frequency ω0 = γB.

In the quantum mechanical example we are considering, the gyromagnetic ratio is
negative (meaning the spin and magnetic moment are anti-parallel), so the precession is
counterclockwise around the field.  A positive gyromagnetic ratio would result in
clockwise precession.  This precession makes it clear that the system has angular
momentum, as opposed to simply a magnetic dipole.

Precession experiments like this are of great practical value.  For example, if we
measure the magnetic field strength and the precession frequency, then the gyromagnetic
ratio can be determined.  This spin precession problem is also of considerable theoretical
utility since it is mathematically equivalent to many other quantum systems that can be
modeled as two-state systems.  This utility is broader than you might guess at first glance
since many multi-state quantum systems can be reduced to two-state systems if the
experiment is designed to only interact with two of the many levels of the system.

3.2.2 Magnetic field in general direction

For our second example, consider a more general direction for the magnetic field
by adding a magnetic field component along the x-axis to the already existing field along
the z-axis.  The simplest approach to solving this new problem would be to redefine the
coordinate system so the z-axis pointed along the direction of the new total magnetic
field.  Then the solution would be the same as was obtained above, with a new value for
the magnitude of the magnetic field being the only change.  This approach would be
considered astute in many circumstances, but we will not take it since we want to get
practice solving this new type of problem and we want to address some issues that are
best posed in the original coordinate system.  Thus we define a new magnetic field as

B z x= +B B0 1ˆ ˆ . (3.42)

This field is oriented in the xz-plane at an angle θ with respect to the z-axis, as shown in
Fig. 3.2.  In light of the solution above, it it useful to define Larmor frequencies

B

B1

B0

θ

Figure 3.2.  Magnetic field in general direction.
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associated with each of the field components:

ω0
0

2
≡ geB

m ce
ω1

1

2
≡ geB

m ce
. (3.43)

Using these definitions, the Hamiltonian becomes

H

S Sz x

= − •
= +

µµ B

ω ω0 1
, (3.44)

or in matrix representation

  
H   0 1

1 0
=

−






• h

2

ω ω
ω ω

. (3.45)

This Hamiltonian is not diagonal, so its eigenstates are not the same as the eigenstates of
Sz.  Rather we must use the diagonalization procedure to find the new eigenvalues and
eigenvectors.  The characteristic equation determining the eigenvalues is

  

h h

h h

h h

2 2

2 2

0

2 2
0

2
2

2

ω λ ω

ω ω λ

ω λ ω

0 1

1 0

0 1

−

− −
=

−



 + − 



 =

, (3.46)

with solution

  
λ ω ω= ± +h

2 0
2

1
2 . (3.47)

Note that the eigenvalues are 
  
±( )hω0 2  when ω1 = 0, which they must be given our

previous solution.  Rather than solve directly for the eigenvectors, let's make them
obvious by rewriting the Hamiltonian.  From Fig. 3.2 it is clear that the angle θ is
determined by the equation

tanθ ω
ω

= =B

B
1

0

1

0
. (3.48)

Using this, the Hamiltonian can be written as

  
H   = +

−






• h

2 0
2

1
2ω ω

θ θ
θ θ

cos sin

sin cos
. (3.49)

If we let n̂ be the unit vector in the direction of the total magnetic field, then the
Hamiltonian is simply

  
H Sn= +h

2 0
2

1
2ω ω  .
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This is what we expected at the beginning: that the problem could be solved by using the
field direction to define a coordinate system.  Thus the eigenvalues are as we found above
and the eigenstates are the spin up and down states along the direction n̂, which are

+ = + + −

− = + − −

n

n

cos sin

sin cos

θ θ

θ θ
2 2

2 2

(3.50)

for this case since the azimuthal angle φ is zero.  These are the same states you would
find by directly solving for the eigenstates of the Hamiltonian.  Since we have already
done that for the Sn case earlier, we do not repeat it here.

Now consider performing the following experiment: begin with the system in the
spin up state along the z-axis, and measure the spin projection along the z-axis after the
system has evolved in this magnetic field for some time.  Let's specifically calculate the
probability that the initial +  is later found to have evolved to the −  state.  This is
commonly known as a spin flip .  According to our time evolution prescription, we must
first write the initial state in terms of the energy eigenstates of the system.  In the
examples above, this was trivial since the energy eigenstates were the ±  states that we
used to express all general states.  Since this new problem is more difficult, we will
proceed more slowly.  The initial state

ψ 0( ) = + (3.51)

must be written in the ± n  basis.  Since this basis is complete, we can apply the closure
relation to get

ψ

θ θ

0

2 2

( ) = + + + − −[ ] +

= + + + + − − +

= + + + + − + −

= + + −

n n n n

n n n n

n n n n

n ncos sin

. (3.52)

The time evolved state is found by multiplying each coefficient by a phase factor
dependent on the energy of that eigenstate:

  
ψ θ θ

t e eiE t
n

iE t
n( ) = + + −− −+ −h hcos sin

2 2
. (3.53)

We will leave it in this form and substitute the energy eigenvalues

  
E± = ± +h

2 0
2

1
2ω ω (3.54)

at the end of the example.
The probability of a spin flip is
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P( )
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
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− −

− −

− −

+ −

+ −

+ −

ψ

θ θ

θ θ

θ θ θ θ

θ θ

t

e e

e e

e e

e

iE t
n

iE t
n

iE t
n

iE t
n

iE t iE t

2

2

2

2

2 2

2 2

2 2

2 2 2 2

2 2
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h h
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h h

ii E E t

E E t

E E t

+ −−( )

+ −

+ −

= +
−( )





=
−( )





h

h

h

2

1
2

2

2 2

1

2

sin cos

sin sin

θ

θ

. (3.55)

Again, this makes it clear that the probability oscillates at the frequency determined by
the difference in energy of the eigenstates.  This formula has important applications in
many problems and is often called Rabi's formula.  In the example at hand, the
probability becomes

  
P( ) sin+ → − =

+
+









ω
ω ω

ω ω1
2

0
2

1
2

2 0
2

1
2

2
t . (3.56)

To gain insight into this formula, consider first the simple cases where the
solution is obvious from our solution of the example in Sec. 3.2.1.  For example, if there
is no added field in the x-direction, then ω1 = 0 and   P( )+ → − = 0 since the initial state is
a stationary state.  In the other extreme, if there is no field component in the z-direction,
then ω0 = 0 and   P( )+ → −  oscillates between 0 and 1 at the frequency ω1, as shown in
Fig. 3.3 (a).  This corresponds to spin precession around the field in the x-direction, with
a complete spin flip from +  to −  and back again occurring at the precession frequency
ω1.  In the general case where both magnetic field components are present, the
probability does not reach one and so there is no time at which the spin is certain to flip
over.  If the x–component of the field is small compared to the z-component, then
ω1 << ω0 and   P( )+ → −  oscillates between 0 and a value much less than one at a
frequency approximately equal to ω0, as shown in Fig. 3.3 (b).

Now consider how we can relate this solution to other two-level systems to show
the power and utility of this simple problem.  We are interested in any two-state system
with a Hamiltonian that, like Eq. (3.45), is not diagonal.  To keep the problem
conceptually similar to the spin problem, consider a system that starts in one of the basis
kets and then ask for the probability that the other ket is measured after some time t.
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Since the Hamiltonian is not diagonal, these kets are not the same as the energy
eigenstates.  Hence the probability of measuring one of these states will oscillate.

3.3 Neutrino Oscillations
A modern example of this type of problem is provided by the phenomenon of

neutrino oscillations.  Neutrinos are uncharged, relativistic particles that are produced in
weak interaction processes.  In nuclear beta decay, neutrinos are produced in processes
such as

n p e

p n e

e

e

→ + +

→ + +

−

+

ν

ν
, (3.57)

where the subscript labels the neutrino as an electron neutrino and the bar labels νe  as an
anti-neutrino.  These neutrinos are produced at relativistic speeds and have little if any
rest mass.  They are often considered to be massless, like photons, but there is no
compelling theoretical reason for them to be massless (as there is for photons).  The mass
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Figure 3.3.  Spin flip probability for (a) field only in x-direction and (b) field with x- and
z-components.
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of a neutrino is thus an open experimental question, and has some interesting
consequences.  One of the reasons we don't yet know the neutrino mass is that neutrinos
are very hard to detect.  They can undergo reactions of the type

ν

ν
e

e

n p e

p n e

+ → +

+ → +

−

+
, (3.58)

which means that a neutrino colliding with a nucleus will change the nucleus and produce
an electron or positron.  Unfortunately, the probabilities or cross-sections for these events
are very small.  As a result, we have large numbers of neutrinos passing through our
bodies all the time with virtually no effect.

There are other types of neutrinos associated with other reactions, such as

π → µ +

µ → + +

+ +
µ

− −
µ

ν

ν νe e

, (3.59)

which represent the decay of a pion (π) to a muon (µ) and the decay of a muon to an
electron, respectively.  A muon behaves exactly like an electron but has a larger mass.
Electrons, muons, and a third particle (tau) and their associated neutrinos are collectively
called Leptons.  In reactions involving these particles it is convenient to define a lepton
flavor quantum number, with the assigned values Le = 1 for the electron e– and its
associated neutrino νe , Le = -1 for the positron e+ and the antineutrino νe , Lµ = 1 for the
muon µ– and its associated neutrino νµ , and Lµ = -1 for the µ+ and νµ .  With these
assignments, the individual electron and muon flavor numbers are conserved in the
processes shown above.  However, there is no theoretical basis for this conservation, and
so we allow for the possibility that these quantum numbers are only approximately
conserved.  This possibility then allows for reactions of the type

ν νe ↔ µ , (3.60)

where an electron neutrino changes its flavor and becomes a muon neutrino, or the
reverse.  Such changes are often called neutrino mixing or neutrino oscillations.

The labeling of neutrinos according to their association with electrons or muons
arises from their behavior in the weak processes described above.  In other words, the
quantum states νe  and νµ  are eigenstates of the Hamiltonian describing the weak
interaction.  However, when neutrinos propagate in free space, the weak interaction is not
relevant and the only Hamiltonian of relevance is that due to the relavisitic energy of the
particles, which includes their rest mass and momenta.  The eigenstates of this
Hamiltonian are generally referred to as the mass eigenstates.  If the masses of the two
types of neutrinos (electron and muon) are different, then, in general, the mass eigenstates
will not coincide with the weak interaction eigenstates.  This distinction between sets of
eigenstates allows for flavor changing processes.

To see why this is so, let the mass eigenstates be labeled ν1  and ν2 .  Either
one of the two bases (mass or weak eigenstates) can be used as a complete basis upon
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which to expand any general state in this system.  Let's assume that the relation between
the bases can be written as

ν θ ν θ ν

ν θ ν θ ν

e = +

= −µ

cos sin

sin cos

2 2

2 2

1 2

1 2

. (3.61)

This form allows us to use our results from above while still being general enough for the
problem at hand.  The angle θ/2 is generally referred to as the mixing angle (some
treatments drop the factor 1/2, but we retain it to be consistent with the previous spin 1/2
discussion).  If the mixing angle is small then the relations become

ν ν

ν ν

e ≈

≈µ

1

2

. (3.62)

Assume that an electron neutrino is created in some weak interaction process and
then propagates through free space to a detector.  We wish to know the probability that a
muon neutrino is detected, which is the signature of neutrino flavor mixing.  Thus the
initial state vector is

ψ ν

θ ν θ ν

0

2 21 2

( ) =

= +

e

cos sin
. (3.63)

During the free-space propagation, the energy eigenstates of the system are the mass
eigenstates since there is no weak interaction present.  Thus the Schrödinger time
evolution for this state is

  
ψ θ ν θ νt e eiE t iE t( ) = +− −cos sin

2 2
1 2

1 2
h h . (3.64)

The energy eigenvalues are simply the relativistic energies, which are determined by the
rest masses and the momenta:

E pc m c ii i= ( ) + ( ) =2 2 2
1 2    ,         , . (3.65)

Assuming that the neutrinos are highly relativistic (mc2 << pc), we find
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/

. (3.66)

The beauty of studying two-level systems such as spin 1/2 and neutrino
oscillations is that they are formally identical.  In the spin 1/2 case we phrased the
problem in terms of finding the probability of a spin flip, whereas here we are looking for
a change in the flavor of the neutrino.  In both cases, the initial and final states are not
energy eigenstates, but rather orthogonal states in a different basis.  Since the problems
are mathematically identical, the probability of a transition between the orthogonal states
takes the same form.  The probability of a neutrino oscillation is thus given by the same
equation as the spin flip probability (Eq. (3.55))

    

P( )

sin sin

ν ν ν ψ

θ

e t

E E t

→ = ( )

=
−( )



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µ µ
2

2 2 1 2

2h

, (3.67)

where the parameter θ has been defined the same in both problems and the energy
difference E+ - E- has been changed to the energy difference E1 - E2.  This energy
difference can be written as

E E
m c

pc

m c

pc

c

p
m m

1 2
1

2 2
2

2 2

3

1
2

2
2

2 2

2

− =
( )

−
( )

= −( )
. (3.68)

Since the neutrinos move at nearly the speed of light c, we can approximate the time from
the creation of the electron neutrino to the detection of the muon neutrino as t L c≅ ,
where L is the distance from the source to the detector.  This gives a probability for
neutrino flavor change of

    
P( ) sin sinν ν θe

m m Lc

p
→ =

−( )







µ

2 2 1
2

2
2 2

2 h
. (3.69)

As a function of the distance L, the probability oscillates from 0 to a maximum value of
sin2 θ - hence the term neutrino oscillations.  By measuring the fractions of different
neutrino flavors at a distance from a neutrino source (e.g., reactor, sun, supernova) and
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comparing to a model for the expected fractions, experimenters thus hope to be able to
infer the masses, or at least the mass differences, of the different neutrinos.

3.4 Magnetic Resonance
In the spin precession example in Sec. 3.2.2, we concluded that a complete spin

flip required a large field in the x-direction.  This represents a large change or
perturbation compared to the initial situation of a field in the z-direction.  Now consider
whether we can induce a complete spin flip without such a large perturbation.  That is,
what small magnetic field can we add to the system that will cause a +  state to oscillate
to a −  state?  To answer this, it is instructive to consider the classical problem first.

A classical magnetic moment aligned with an angular momentum precesses
around the direction of an applied magnetic field.  Now imagine going to a reference
frame that rotates about the field (assume z-direction) with the same frequency as the
precession.  An observer in that frame would see the magnetic moment stationary and so
would conclude that there is no magnetic field in that frame.  If that rotating observer
were asked to flip the magnetic moment from up to down along the z-axis, she would
answer "Simple, just impose a small magnetic field perpendicular to the z-axis, which
will cause the spin to precess around that direction."  Since that field is the only field
acting in that frame, it can be as small as one likes.  The magnitude simply determines the
time for the spin to flip.

In this situation the transverse applied field is stationary in the rotating frame, so
it will appear to be rotating at the precessional frequency in the original frame.  Thus we
could write it as

B x y= ( ) + ( )B t B t1 1cos ˆ sin ˆω ω , (3.70)

where we allow the frequency ω to differ from the precessional frequency ω0 in order to
solve the problem more generally.  In that case, there would be some residual precession
in the rotating frame and so the rotating observer would conclude that there is some
residual field in the z-direction.  Hence, we expect that the added transverse field would
not cause a complete flipping of the magnetic moment from up to down in this general
case.

Let's now apply this reasoning to the quantum mechanical case.  Assume a
magnetic field of the form

B z x y= + ( ) + ( )[ ]B B t t0 1ˆ cos ˆ sin ˆω ω , (3.71)

which results in a Hamiltonian

H

S t S t Sz x y

= − •

= + ( ) + ( )[ ]
µµ B

ω ω ω ω0 1 cos sin
. (3.72)

We again define the Larmor frequencies corresponding to the two magnetic field
components,
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ω0
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2
≡ geB

m ce
. (3.73)

The matrix representation of the Hamiltonian becomes

  

H
e

e

i t

i t   0 1

1 0

=
−







•

−h

2

ω ω
ω ω

ω

ω . (3.74)

This Hamiltonian is time dependent, so we can no longer use our simple
prescription for Schrödinger time evolution.  Rather, we must return to the Schrödinger
equation and solve it with these new time-dependent terms.  If we write the state vector
as

ψ t c t c t
c t

c t
( ) = ( ) + + ( ) − =

( )
( )





+ −

• +

−
  , (3.75)

then Schrödinger's equation

  
i

d

dt
t H t th ψ ψ( ) = ( ) ( ) (3.76)

leads to
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− + −

( ) = ( ) + ( )

( ) = ( ) − ( )
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ω

0 1

1 0

2 2

2 2

, (3.77)

where ċ t+( ) denotes a time derivative.  To solve these time-dependent coupled
differential equations, it is useful to follow the lead of the classical discussion and
consider the problem from the rotating frame.  Though we don't yet have the complete
tools to know how to effect this transformation, we will take it on faith that after a frame
transformation the state vector can be written as

ψ̃ ω ω
ω

ωt c t e c t e
c t e

c t e
i t i t

i t

i t( ) = ( ) + + ( ) − = ( )
( )






+ −
− • +

−
−

2 2
2

2  , (3.78)

where ψ̃ t( )  is the state vector as viewed from the rotating frame.  If we call the
coefficients of this vector α±( )t , then we can write

ψ̃ α α
α
α

t t t
t

t
( ) = ( ) + + ( ) − =

( )
( )


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
+ −

• +

−
  , (3.79)

where the relations between the sets of coefficients are

c t e t

c t e t

i t

i t

+
−

+

− −

( ) = ( )
( ) = ( )

ω

ω

α

α

2

2
. (3.80)

The state vector in the non-rotating frame can thus be written as
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ψ α α
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ω ω
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ωt t e t e
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Another way of viewing this transformation is to say that based upon earlier solutions of
similar problems (Eq. (3.33)), we expect the coefficients c t±( ) to have time dependence
of the form   e

i tm ω 2 and so we have extracted that part of the solution and now need to
solve for the remaining time dependence in the coefficients α±( )t .  In this view, we have
simply performed a mathematical trick to make the solution easier.

If we now substitute the expressions for c t±( ) in terms of α±( )t  into the
differential equations, we get

  

i t t t

i t t t

h
h h

h
h h

˙

˙

α ωα ω α

α ω α ωα

+ + −

− + −

( ) = − ( ) + ( )

( ) = ( ) + ( )

∆

∆
2 2

2 2

1

1
, (3.82)

where we have defined a new term

∆ω ω ω≡ − 0 , (3.83)

which is the difference between the angular frequencies of the rotating field and the
Larmor precession due to the z-component of the magnetic field.  Since α±( )t  are the
coefficients of the transformed state vector ψ̃ t( ) , these differential equations can be
considered as comprising the Schrödinger equation

  
i

d

dt
t H th ˜ ˜ ˜ψ ψ( ) = ( ) , (3.84)

where the new Hamiltonian H̃  has the matrix representation

  
H̃   1

1
=

−



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• h

2

∆
∆

ω ω
ω ω

. (3.85)

Thus we have transformed (by rotation or mathematical sleight of hand) the
original problem into a new problem that has a time-independent Hamiltonian.  Once we
solve the new problem, we can use the transformation equations to find the solution to the
original problem.  However, since the new Hamiltonian H̃  is time-independent, we
already know the solution.  That is, this new problem has the same Hamiltonian as the
spin precession problem in Sec. 3.2.2, except that the term ω0 is replaced by the new term
-∆ω.  We are interested in finding the same probability   P( )+ → −  that an initial +  state
is later found to have evolved to the −  state.  The rotational transformation does not
alter the ±  basis states so if

ψ 0( ) = + , (3.86)

then

ψ̃ 0( ) = + . (3.87)
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The probability for a spin flip is given by

  

P( )+ → − = − ( )

= ( )−
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. (3.88)

The equations relating the coefficients can be used to write
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, (3.89)

which means that the probability we desire is

  P( ) ˜+ → − = − ( )ψ t
2
. (3.90)

Thus we can use the spin precession solution we found above (Eq. (3.56)), with the
change ω0 –> –∆ω, resulting in
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This is the famous Rabi flopping equation and has important applications all throughout
physics.

The probability of a spin flip oscillates with an angular frequency given by

Ω = −( ) +ω ω ω0
2

1
2 , (3.92)

that is typically referred to as the generalized Rabi frequency.  The term Rabi
frequency generally refers to the frequency ω1, which is the value of the generalized
Rabi frequency when the frequency ω of the rotating field is we set equal to the Larmor
precession frequency ω0 of the system in the presence of the magnetic field B0 alone.  For
this choice of ω, the probability of a spin flip becomes

  
P( ) sin+ → − = 





2 1

2
ω

t , (3.93)

which implies that the spin is flipped with 100% probability at an angular frequency ω1.
For other choices of the frequency ω, the probability of a spin flip will oscillate with an
amplitude smaller than one.  The amplitude of the spin flip oscillation, as a function of
the frequency ω of the rotating field, is plotted in Fig. 3.4.  This curve is generally
referred to as a Lorentzian curve and clearly exhibits the important resonant behavior of
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the spin flip probability.  The full width at half maximum (FWHM ) of the resonance
curve is 2ω1.

For the resonance condition ω = ω0, the probability of a spin flip as a function of
time is plotted in Fig. 3.5.  Since the frequency ω1 is proportional to the applied field B1,
the rate of spin flipping increases with increasing field.  However, it is important to note
that there is still 100% probability of a spin flip for very small fields.  This is the property
we were looking for at the beginning of the problem – a way to flip the spin without
perturbing the system appreciably.  After a time t given by ω1t = π, the probability for a
spin flip is 100%.  We have assumed that the applied field is on continuously, but this
spin flip can also be produced by a pulsed field with a magnitude and duration that satisfy
ω1t = π.  Such a pulse is often called a π-pulse and is used to flip a spin, or more
generally to make a transition from one energy state to another with 100% certainty.  The
diagram on the right of Fig. 3.5 illustrates the energy levels of the spin in the magnetic
field and how transitions between the levels can be associated with the spin flip

Figure 3.5.  Rabi oscillations for resonance condition.
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oscillation.  A transition from an upper level to a lower level takes energy from the atom
and gives it to the magnetic field and is known as emission, while the opposite process
takes energy from the field and is known as absorption.  This same picture of the
interaction between a two-level system and a field is used to explain how atoms absorb
and emit light.

Problems

3.1 Consider a simple two-state quantum system with a Hamiltonian

H
E

E
  = 





• 1

2

0

0
.

Another physical observable A is described by the operator

A
a

a
  = 





• 0

0
,

where a is real and positive.  Let the initial state of the system be ψ( )0 1= a ,
where a1  is the eigenstate corresponding to the larger of the two possible
eigenvalues of A.  What is the frequency of oscillation (i.e., the Bohr frequency)
of the expectation value of A?

3.2 (Townsend 4.5)  A beam of identical neutral particles with spin 1/2 is prepared in
the +  state.  The beam enters a uniform magnetic field Bo, which is in the x-z
plane oriented at an angle θ with respect to the z-axis.  At a time T later, the beam
enters a Stern-Gerlach analyzer oriented along the y-axis.  What is the probability
that particles will be detected with 

  
Sy = h / 2?  Check your result by evaluating

the special cases θ = 0 and θ = π/2.

3.3 (Goswami 16.6)  Consider a spin 1/2 particle.  At time t = 0, the particle is in the
state + .

a) If Sx is measured at t = 0, what is the probability of getting a value   h / 2?

b) Suppose instead of performing the above measurement, the system is allowed
to evolve in a magnetic field   

r
B y= B0 ˆ .  Using the Sz basis, calculate the state

of the system after a time t.

c) At time t, suppose we measure Sx; what is the probability that a value   h / 2
will be found?
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3.4 (Goswami 16.7)  Consider a spin 1/2 particle.  At time t = 0, the particle is in the
state + .

a) At time t = 0, we measure Sx and find a value   h / 2.  What is the state vector
immediately after the measurement?

b) At the same instant of the measurement, we apply a magnetic field   

r
B z= B0ˆ

on the particle and allow the particle to precess for a time T.  What is the state
of the system at t = T?

c) At t = T, the magnetic field is very rapidly rotated so that it is now   

r
B y= B0 ˆ .

After another time interval T, a measurement of Sx is carried out once more.
What is the probability that a value   h / 2 is found?

3.5 (Townsend 4.4)  A beam of identical neutral particles with spin 1/2 travels along
the y-axis.  The beam passes through a series of two Stern-Gerlach (SG) spin
analyzing magnets, each of which is designed to analyze the spin projection along
the z-axis.  The first Stern-Gerlach analyzer only allows particles with spin up
(along the z-axis) to pass through.  The second Stern-Gerlach analyzer only
allows particles with spin down (along the z-axis) to pass through.  The particles
travel at speed v0 between the two analyzers, which are separated by a region of
length   l0  in which there is a uniform magnetic field B0 pointing in the x-direction.
Determine the smallest value of   l0  such that only 25% of the particles transmitted
by the first analyzer are transmitted by the second analyzer.

3.6 (Townsend 4.13)  Let the matrix representation of the Hamiltonian of a three-state
system be

H

E A

E

A E

  =














•
0

1

0

0

0 0

0

using the basis states 1 , 2 , and 3 .

a) If the state of the system at time t = 0 is ψ( )0 2= , what is the probability
that the system is in state 2  at time t?

b) If, instead, the state of the system at time t = 0 is ψ( )0 3= , what is the
probability that the system is in state 3  at time t?

3.7 In part 3 of Spins Lab #3 you built a spin-1 interferometer and measured the
relative probabilities after the final SG device for the seven possible cases where
one beam, a pair of beams, or all three beams from the middle SG device were
used.  Show how you used the projection postulate to calculate the theoretical
probabilities.
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